Robust Control Toolbox ${ }^{\text {TM }}$

Reference

Gary Balas
Richard Chiang
Andy Packard
Michael Safonov

MATLAB ${ }^{\circ}$

How to Contact MathWorks

Latest news:
www.mathworks.com
Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral
Technical support: www.mathworks.com/support/contact_us
Phone:
508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robust Control Toolbox ${ }^{\text {TM }}$ Reference

© COPYRIGHT 2005-2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2005	First printing
March 2006	Online only
September 2006	Online only
March 2007	Online only
September 2007	Online only
March 2008	Online only
October 2008	Online only
March 2009	Online only
September 2009	Online only
March 2010	Online only
September 2010	Online only
April 2011	Online only
September 2011	Online only
March 2012	Online only
September 2012	Online only
March 2013	Online only
September 2013	Online only
March 2014	Online only
October 2014	Online only
March 2015	Online only
September 2015	Online only
March 2016	Online only

New for Version 3.0.2 (Release 14SP3)
Revised for Version 3.1 (Release 2006a)
Revised for Version 3.1.1 (Release 2006b)
Revised for Version 3.2 (Release 2007a)
Revised for Version 3.3 (Release 2007b)
Revised for Version 3.3.1 (Release 2008a)
Revised for Version 3.3.2 (Release 2008b)
Revised for Version 3.3.3 (Release 2009a)
Revised for Version 3.4 (Release 2009b)
Revised for Version 3.4.1 (Release 2010a)
Revised for Version 3.5 (Release 2010b)
Revised for Version 3.6 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.2 (Release 2012b)
Revised for Version 4.3 (Release 2013a)
Revised for Version 5.0 (Release 2013b)
Revised for Version 5.1 (Release 2014a)
Revised for Version 5.2 (Release 2014b)
Revised for Version 5.3 (Release 2015a)
Revised for Version 6.0 (Release 2015b)
Revised for Version 6.1 (Release 2016a)

Contents

Alphabetical List

1

Block Reference
2

Alphabetical List

actual2normalized

Transform actual values to normalized values

Syntax

```
NV = actual2normalized(uElement,AV)
[NV,ndist] = actual2normalized(uElement,AV)
```


Description

NV = actual2normalized(uElement, AV) transforms the values AV of the uncertain element uElement into normalized values NV. If AV is the nominal value of uElement, $N V$ is 0 . Otherwise, $A V$ values inside the uncertainty range of uElement map to the unit ball ||NV|| <= 1, and values outside the uncertainty range map to ||NV|| > 1. The argument $A V$ can contain a single value or an array of values. NV has the same dimensions as AV.
[NV,ndist] = actual2normalized(uElement, AV) also returns the normalized distance ndist between the values AV and the nominal value of uElement. This distance is the norm of NV. Therefore, ndist <= 1 for values inside the uncertainty range of uElement, and ndist > 1 for values outside the range. If AV is an array of values, then ndist is an array of normalized distances.

The robustness margins computed in robuststab and robustperf serve as bounds for the normalized distances in ndist. For example, if an uncertain system has a stability margin of 1.4 , this system is stable for all uncertain element values whose normalized distance from the nominal is less than 1.4.

Examples

Uncertain Real Parameter with Symmetric Range

For uncertain real parameters whose range is symmetric about their nominal value, the normalized distance is intuitive, scaling linearly with the numerical difference from the uncertain real parameter's nominal value.

Create uncertain real parameters with a range that is symmetric about the nominal value, where each end point is 1 unit from the nominal. Points that lie inside the range are less than 1 unit from the nominal, while points that lie outside the range are greater than 1 unit from the nominal.

```
a = ureal('a',3,'range',[1 5]);
NV = actual2normalized(a,[1 3 5])
NV =
    -1.0000 0 1.0000
NV = actual2normalized(a,[2 4])
NV =
    -0.5000 0.5000
NV = actual2normalized(a,[0 6])
NV =
    -1.5000 1.5000
```

Plot the normalized values and normalized distance for several values.

```
values = linspace(-3,9,250);
```

[nv, ndist] = actual2normalized(a, values);
plot(values, nv,'r.', values, ndist,'b-')

Uncertain Real Parameter with Nonsymmetric Range

Create a nonsymmetric parameter. The end points are 1 normalized unit from nominal, and the nominal is 0 normalized units from nominal. Moreover, points inside the range are less than 1 unit from nominal, and points outside the range are greater than 1 unit from nominal. However, the relationship between the normalized distance and numerical difference is nonlinear.

```
au = ureal('ua',4,'range',[1 5]);
NV = actual2normalized(au,[1 4 5])
```

```
    -1 0 1
NV = actual2normalized(au,[2 4.5])
NV =
    -0.8000 0.4000
NV = actual2normalized(au,[0 6])
NV =
    -1.1429 4.0000
```

Graph the relationship between actual and normalized values. The relationship is very nonlinear.
$A V=$ linspace $(-5,6,250)$;
NV = actual2normalized(au,AV);
plot(NV, AV, 0, au. NominalValue, 'ro', -1, au. Range(1), 'bo', 1, au.Range (2) , 'bo') grid, xlabel('Normalized Values'), ylabel('Actual Values')

The red circle shows the nominal value (normalized value $=0$). The blue circles show the values at the edges of the uncertainty range (normalized values $=-1,1$).

More About

Algorithms

For details on the normalize distance, see "Normalizing Functions for Uncertain Elements" in the Robust Control Toolbox ${ }^{\mathrm{TM}}$ User's Guide.

See Also
 normalized2actual | robuststab | robustperf

aff2pol

Convert affine parameter-dependent models to polytopic models

Syntax

polsys = aff2pol(affsys)

Description

aff2pol derives a polytopic representation polsys of the affine parameter-dependent system

$$
\begin{aligned}
& E(p) \dot{x}=A(p) x+B(p) u \\
& y=C(p) x+D(p) u
\end{aligned}
$$

where $p=\left(p_{1}, \ldots, p_{\mathrm{n}}\right)$ is a vector of uncertain or time-varying real parameters taking values in a box or a polytope. The description affsys of this system should be specified with psys.

The vertex systems of polsys are the instances of Equation 1-1 and Equation 1-2 at the vertices $p_{\text {ex }}$ of the parameter range, i.e., the SYSTEM matrices

$$
\left(\begin{array}{cc}
A\left(p_{e x}\right)+j E\left(p_{e x}\right) & B\left(p_{e x}\right) \\
C\left(p_{e x}\right) & D\left(p_{e x}\right)
\end{array}\right)
$$

for all corners $p_{\text {ex }}$ of the parameter box or all vertices $p_{\text {ex }}$ of the polytope of parameter values.

See Also
psys | pvec | uss

augw

State-space or transfer function plant augmentation for use in weighted mixedsensitivity H_{∞} and H_{2} loopshaping design

Syntax

$P=\operatorname{AUGW}(G, W 1, W 2, W 3)$

Description

P = AUGW(G,W1,W2,W3) computes a state-space model of an augmented LTI plant $P(s)$ with weighting functions $W_{1}(s), W_{2}(s)$, and $W_{3}(s)$ penalizing the error signal, control signal and output signal respectively (see block diagram) so that the closed-loop transfer function matrix is the weighted mixed sensitivity

$$
T y_{1} u_{1} \triangleq\left[\begin{array}{c}
W_{1} S \\
W_{2} R \\
W_{3} T
\end{array}\right]
$$

where S, R and T are given by

$$
\begin{aligned}
& S=(I+G K)^{-1} \\
& R=K(I+G K)^{-1} \\
& T=G K(I+G K)^{-1}
\end{aligned}
$$

The LTI systems S and T are called the sensitivity and complementary sensitivity, respectively.

Plant Augmentation

For dimensional compatibility, each of the three weights W_{1}, W_{2} and W_{3} must be either empty, a scalar (SISO) or have respective input dimensions $N_{\mathrm{y}}, N_{\mathrm{u}}$, and N_{y} where G is N_{y}-by- N_{u}. If one of the weights is not needed, you may simply assign an empty matrix []; e.g., $\mathrm{P}=\operatorname{AUGW}(\mathrm{G}, \mathrm{W} 1,[], \mathrm{W} 3)$ is $P(s)$ as in the "Algorithms" on page 1-12 section below, but without the second row (without the row containing W2).

Examples

Create Augmented Plant for H-Infinity Synthesis

```
s = zpk('s');
G = (s-1)/(s+1);
W1 = 0.1*(s+100)/(100*s+1);
W2 = 0.1;
W3 = [];
P = augw (G,W1,W2,W3);
[K,CL,GAM] = hinfsyn(P);
[K2,CL2,GAM2] = h2syn(P);
```

$\mathrm{L}=\mathrm{G} * \mathrm{~K}$;
$S=i n v(1+L) ;$
$\mathrm{T}=1-\mathrm{S}$;
sigma(S, 'k', GAM/W1, 'k-.', T, 'r', GAM*G/W2, 'r-.')
legend('S = 1/(1+L)','GAM/W1','T=L/(1+L)','GAM*G/W2','Location', 'Northwest')

Singular Values

Limitations

The transfer functions G, W_{1}, W_{2} and W_{3} must be proper, i.e., bounded as $s \rightarrow \infty$ or, in the discrete-time case, as $z \rightarrow \infty$. Additionally, W_{1}, W_{2} and W_{3} should be stable. The plant G should be stabilizable and detectable; else, P will not be stabilizable by any K.

More About

Algorithms

The augmented plant $P(s)$ produced by is

$$
P(s)=\left[\begin{array}{c|c}
W_{1} & -W_{1} G \\
0 & W_{2} \\
0 & W_{3} G \\
\hline I & -G
\end{array}\right]
$$

Partitioning is embedded via $P=m k t i t o(P, N Y, N U)$, which sets the InputGroup and OutputGroup properties of P as follows

```
[r,c]=size(P);
P.InputGroup = struct('U1',1:c-NU,'U2',c-NU+1:c);
P.OutputGroup = struct('Y1',1:r-NY,'Y2',r-NY+1:r);
```


See Also

h2syn | hinfsyn | mixsyn | mktito

balancmr

Balanced model truncation via square root method

Syntax

```
GRED = balancmr(G)
GRED = balancmr(G,order)
[GRED,redinfo] = balancmr(G,key1,value1,...)
[GRED,redinfo] = balancmr(G,order,key1,value1, ...)
```


Description

balancmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system these values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel singular values, σl.

With only one input argument G, the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error \| GGRED $\| \infty$ for well-conditioned model reduced problems [1]:

$$
\|G-G r e d\|_{\infty} \leq 2 \sum_{k+1}^{n} \sigma_{i}
$$

This table describes input arguments for balancmr.

Argument	Description
G	LTI model to be reduced. Without any other inputs, balancmr will plot the Hankel singular values of G and prompt for reduced order

Argument	Description
ORDER	(Optional) Integer for the desired order of the reduced model, or optionally a vector packed with desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order $=x: y$, or a vector of positive integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for 'Order '. In this case, reduced order will be determined when the sum of the tails of the Hankel singular values reaches the 'MaxError'.

This table lists the input arguments 'key ' and its 'value'.

Argument	Value	Description
'MaxError'	Real number or vector of different errors	Reduce to achieve H_{∞} error. When present, 'MaxError' overides ORDER input.
'Weights'	\{Wout, Win\} cell array	Optimal 1-by-2 cell array of LTI weights Wout (output) and Win (input). Defaults are both identity. Weights must be invertible.
'Display'	'on' or 'off'	Display Hankel singular plots (default 'off').
'Order'	Integer, vector or cell array	Order of reduced model. Use only if not specified as 2nd argument.

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.

Argument	Description
GRED	LTI reduced order model. Becomes multidimensional array when input is a serial of different model order array

Argument	Description		
REDINFO	A STRUCT array with three fields:		
	$-\quad$ REDINFO.ErrorBound (bound on $\\|G-G R E D\\| \infty$)		
	- REDINFO.StabSV (Hankel SV of stable part of G)		
	- REDINFO.UnstabSV (Hankel SV of unstable part of G)		

G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G, the following commands can get a set of reduced order models based on your selections:

```
rng(1234,'twister');
G = rss(30,5,4);
[g1, redinfo1] = balancmr(G); % display Hankel SV plot
    % and prompt for order (try 15:20)
[g2, redinfo2] = balancmr(G,20);
[g3, redinfo3] = balancmr(G,[10:2:18]);
[g4, redinfo4] = balancmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
    figure(i); eval(['sigma(G,g' num2str(i) ');']);
end
```


More About

Algorithms

Given a state space (A, B, C, D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the $k^{\text {th }}$ order reduced model.

1 Find the SVD of the controllability and observability grammians

$$
\begin{aligned}
& P=U_{p} \Sigma_{p} V_{p}{ }^{T} \\
& Q=U_{q} \Sigma_{q} V_{q}^{T}
\end{aligned}
$$

2 Find the square root of the grammians (left/right eigenvectors)

$$
\begin{aligned}
& L_{p}=U_{p} \Sigma_{p}^{1 / 2} \\
& L_{o}=U_{q} \Sigma_{q}^{1 / 2}
\end{aligned}
$$

3 Find the SVD of $\left(L_{o}{ }^{T} L_{p}\right)$
$L_{o}{ }^{T} L_{p}=U \Sigma V^{T}$
4 Then the left and right transformation for the final $k^{\text {th }}$ order reduced model is

$$
\begin{aligned}
& \left.S_{L, B I G}=L_{o} U(:, 1: k) \Sigma(1 ; k, 1: k)\right)^{-1 / 2} \\
& \left.S_{R, B I G}=L_{p} V(:, 1: k) \Sigma(1 ; k, 1: k)\right)^{-1 / 2}
\end{aligned}
$$

5 Finally,

$$
\left[\begin{array}{c|c}
\hat{A} & \hat{B} \\
\hline \hat{C} & \hat{D}
\end{array}\right]=\left[\begin{array}{c|c}
S_{L, B I G}^{T} A S_{R, B I G} & S_{L, B I G}^{T} B \\
\hline C S_{R, B I G} & D
\end{array}\right]
$$

The proof of the square root balance truncation algorithm can be found in [2].

References

[1] Glover, K., "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their L μ-error Bounds," Int. J. Control, Vol. 39, No. 6, 1984, p. 1145-1193
[2] Safonov, M.G., and R.Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., Vol. 34, No. 7, July 1989, p.729-733

See Also

reduce | schurmr | bstmr | ncfmr | hankelmr | hankelsv

bilin

Multivariable bilinear transform of frequency (s or z)

Syntax

GT = bilin(G,VERS,METHOD,AUG)

Description

bilin computes the effect on a system of the frequency-variable substitution,

$$
s=\frac{\alpha z+\delta}{\gamma z+\beta}
$$

The variable VERS denotes the transformation direction:
VERS $=1$, forward transform $(s \rightarrow z)$ or $(s \rightarrow \tilde{s})$.
VERS $=-1$, reverse transform $(z \rightarrow s)$ or $(\tilde{s} \rightarrow s)$.
This transformation maps lines and circles to circles and lines in the complex plane. People often use this transformation to do sampled-data control system design [1] or, in general, to do shifting of $j \omega$ modes [2], [3], [4].

Bilin computes several state-space bilinear transformations such as backward rectangular, etc., based on the METHOD you select

Bilinear Transform Types

Method	Type of bilinear transform
'BwdRec '	backward rectangular:
	$s=\frac{z-1}{T z}$ AUG $=T$, the sample time. FwdRec' forward rectangular:

Method	Type of bilinear transform
	$s=\frac{z-1}{T}$ AUG $=T$, the sample time.
'S_Tust'	shifted Tustin: $s=\frac{2}{T}\left(\frac{z-1}{\frac{z}{h}+1}\right)$ AUG $=[T h]$, is the "shift" coefficient.
'S_ftjw'	shifted $j \omega$-axis, bilinear pole-shifting, continuous-time to continuous-time: $s=\frac{\tilde{s}+p_{1}}{1+\tilde{s} / p_{2}}$ $\text { AUG }=\left[p_{2} p_{1}\right]$
'G_Bili'	METHOD = 'G_Bili', general bilinear, continuous-time to continuous-time: $s=\frac{\alpha \tilde{s}+\delta}{\gamma \tilde{s}+\beta}$ $\mathrm{AUG}=[\alpha \beta \gamma \delta]$

Examples

Tustin Continuous s-Plane to Discrete z-Plane Transforms

Consider the following continuous-time plant (sampled at 20 Hz):

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right], B=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], C=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], D=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] ; T_{s}=0.05
$$

Following is an example of four common "continuous to discrete" bilin transformations for the sampled plant:

```
A = [-1 1; 0 -2];
B = [1 0; 1 1];
C = [1 0; 0 1];
D = [0 0; 0 0];
sys = ss(A,B,C,D); % ANALOG
Ts = 0.05; % sample time
syst = c2d(sys,Ts,'tustin'); % Tustin
sysp = c2d(sys,Ts,'prewarp',40); % Pre-warped Tustin
sysb = bilin(sys,1,'BwdRec',Ts); % Backward Rectangular
sysf = bilin(sys,1,'FwdRec',Ts); % Forward Rectangular
```

Plot the response of the continuous-time plant and the transformed discrete-time plants.

```
w = logspace(-2,3,50); % frequencies to plot
sigma(sys,syst,sysp,sysb,sysf,w);
legend('sys','syst','sysp','sysb','sysf','Location','SouthWest')
```


Bilinear continuous to continuous pole-shifting
Design an H mixed-sensitivity controller for the ACC Benchmark plant

$$
G(s)=\frac{1}{s^{2}\left(s^{2}+2\right)}
$$

such that all closed-loop poles lie inside a circle in the left half of the s-plane whose diameter lies on between points [p1,p2]=[-12,-2]:
p1=-12; p2=-2; s=zpk('s');

```
G=ss(1/(s^2*(s^2+2))); % original unshifted plant
Gt=bilin(G,1,'Sft_jw',[p1 p2]); % bilinear pole shifted plant Gt
Kt=mixsyn(Gt,1,[],1); % bilinear pole shifted controller
K =bilin(Kt,-1,'Sft_jw',[p1 p2]); % final controller K
```

As shown in the following figure, closed-loop poles are placed in the left circle [p1 p2]. The shifted plant, which has its non-stable poles shifted to the inside the right circle, is

$$
G_{t}(s)=4.765 \times 10^{-5} \frac{(s-12)^{4}}{(s-2)^{2}\left(s^{2}-4.274 s+5.918\right)}
$$

[^0]
More About

Algorithms

bilin employs the state-space formulae in [3]:

$$
\left[\begin{array}{c|c}
A_{b} & B_{b} \\
\hline C_{b} & D_{b}
\end{array}\right]=\left[\begin{array}{c|c}
(\beta A-\delta I)(\alpha I+\gamma A)^{-1} & (\alpha \beta-\gamma \delta)(\alpha I-\gamma A)^{-1} B \\
\hline C(\alpha I-\gamma A)^{-1} & D+\gamma C(\alpha I-\gamma A)^{-1} B
\end{array}\right]
$$

References

[1] Franklin, G.F., and J.D. Powell, Digital Control of Dynamics System, Addison-Wesley, 1980.
[2] Safonov, M.G., R.Y. Chiang, and H. Flashner, " H_{∞} Control Synthesis for a Large Space Structure," AIAA J. Guidance, Control and Dynamics, 14, 3, p. 513-520, May/June 1991.
[3] Safonov, M.G., "Imaginary-Axis Zeros in Multivariable H_{∞} Optimal Control", in R.F. Curtain (editor), Modelling, Robustness and Sensitivity Reduction in Control Systems, p. 71-81, Springer-Varlet, Berlin, 1987.
[4] Chiang, R.Y., and M.G. Safonov, " H_{∞} Synthesis using a Bilinear Pole Shifting Transform," AIAA, J. Guidance, Control and Dynamics, vol. 15, no. 5, p. 1111-1117, September-October 1992.

See Also

c2d | d2c | sectf

bstmr

Balanced stochastic model truncation (BST) via Schur method

Syntax

```
GRED = bstmr(G)
GRED = bstmr(G,order)
[GRED,redinfo] = bstmr(G,key1,value1,...)
[GRED,redinfo] = bstmr(G,order,key1,value1,...)
```


Description

bstmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the phase matrix of the original system [2].

The error bound is computed based on Hankel singular values of the phase matrix of G. For a stable system these values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining these values.

With only one input argument G, the function will show a Hankel singular value plot of the phase matrix of G and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the multiplicative \| GRED-1 (G-GRED) $\| \infty$ or relative error $\| G-1$ (G-GRED) $\| \infty$ for well-conditioned model reduction problems [1]:

$$
\left\|G^{-1}(G-G r e d)\right\|_{\infty} \leq \prod_{k+1}^{n}\left(1+2 \sigma_{i}\left(\sqrt{1+\sigma_{i}^{2}}+\sigma_{i}\right)\right)-1
$$

This table describes input arguments for bstmr.

Argument	Description
G	LTI model to be reduced (without any other inputs will plot its Hankel singular values and prompt for reduced order)
ORDER	(Optional) an integer for the desired order of the reduced model, or a vector of desired orders for batch runs

A batch run of a serial of different reduced order models can be generated by specifying order $=x: y$, or a vector of integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for 'ORDER '. In this case, reduced order will be determined when the accumulated product of Hankel singular values shown in the above equation reaches the 'MaxError'.

Argument	Value	Description
'MaxError'	Real number or vector of different errors	Reduce to achieve H_{∞} error. When present, 'MaxError' overides ORDER input.
'Display'	'on ' or 'off'	Display Hankel singular plots (default 'off ').
'Order'	Integer, vector or cell array	Order of reduced model. Use only if not specified as 2nd argument.

This table describes output arguments.

Argument	Description		
GRED	LTI reduced order model. Become multi-dimension array when input is a serial of different model order array.		
REDINFO	A STRUCT array with three fields: - REDINFO.ErrorBound (bound on $\left.\left\\|G^{-1}(G-G R E D)\right\\| \infty\right)$ 		

G can be stable or unstable, continuous or discrete.

Examples

Given a continuous or discrete, stable or unstable system, G , the following commands can get a set of reduced order models based on your selections:

```
rng(1234,'twister');
G = rss(30,5,4); G.d = zeros(5,4);
[g1, redinfo1] = bstmr(G); % display Hankel SV plot
    % and prompt for order (try 15:20)
[g2, redinfo2] = bstmr(G,20);
[g3, redinfo3] = bstmr(G,[10:2:18]);
[g4, redinfo4] = bstmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
    figure(i); eval(['sigma(G,g' num2str(i) ');']);
end
```


More About

Algorithms

Given a state space (A, B, C, D) of a system and k, the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the $k^{\text {th }}$ order reduced model.

1 Find the controllability grammian P and observability grammian Q of the left spectral factor $\Phi=\Gamma(\sigma) \Gamma^{*}(-\sigma)=\Omega^{*}(-\sigma) \Omega(\sigma)$ by solving the following Lyapunov and Riccati equations

$$
\begin{aligned}
& A P+P A^{T}+B B^{T}=0 \\
& B_{W}=P C^{T}+B D^{T} \\
& Q A+A^{T} Q+\left(Q B_{W}-C^{T}\right)\left(-D D^{T}\right)\left(Q B_{W}-C^{T}\right)^{T}=0
\end{aligned}
$$

2 Find the Schur decomposition for $P Q$ in both ascending and descending order, respectively,

$$
\begin{aligned}
& V_{A}^{T} P Q V_{A}=\left[\begin{array}{ccc}
\lambda_{1} & \cdots & \cdots \\
0 & \cdots & \cdots \\
0 & 0 & \lambda_{n}
\end{array}\right] \\
& V_{D}^{T} P Q V_{D}=\left[\begin{array}{ccc}
\lambda_{n} & \cdots & \cdots \\
0 & \cdots & \cdots \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
$$

3 Find the left/right orthonormal eigen-bases of $P Q$ associated with the $k^{\text {th }}$ big Hankel singular values of the all-pass phase matrix $\left(W^{*}(s)\right)^{-1} G(s)$.

$$
\begin{aligned}
& V_{A}=[V_{R, S M A L L}, \overbrace{V_{L, B I G}}^{k}] \\
& V_{D}=[\overbrace{V_{R, B I G}}^{k}, V_{L, S M A L L}]
\end{aligned}
$$

4 Find the SVD of $\left(V^{T}{ }_{L, B I G} V_{R, B I G}\right)=U \Sigma \mathrm{~s}^{T} \mathrm{~T}$
5 Form the left/right transformation for the final $k^{\text {th }}$ order reduced model
$S_{L, B I G}=V_{L, B I G} U \Sigma(1: k, 1: k)^{-1 / 2}$
$S_{R, B I G}=V_{R, B I G} V \Sigma(1: k, 1: k)^{-1 / 2}$
6 Finally,

$$
\left[\begin{array}{c|c}
\hat{A} & \hat{B} \\
\hline \hat{C} & \hat{D}
\end{array}\right]=\left[\begin{array}{c|c}
S_{L, B I G}^{T} A S_{R, B I G} & S_{L, B I G}^{T} B \\
\hline C S_{R, B I G} & D
\end{array}\right]
$$

The proof of the Schur BST algorithm can be found in [1].

Note The BST model reduction theory requires that the original model D matrix be full rank, for otherwise the Riccati solver fails. For any problem with strictly proper model, you can shift the $j \omega$-axis via bilin such that BST/REM approximation can be achieved up to a particular frequency range of interests. Alternatively, you can attach a small but full rank D matrix to the original problem but remove the D matrix of the reduced
order model afterwards. As long as the size of D matrix is insignificant inside the control bandwidth, the reduced order model should be fairly close to the true model. By default, the bstmr program will assign a full rank D matrix scaled by 0.001 of the minimum eigenvalue of the original model, if its D matrix is not full rank to begin with. This serves the purpose for most problems if user does not want to go through the trouble of model pretransformation.

References

[1] Zhou, K., "Frequency-weighted model reduction with L ∞ error bounds," Syst. Contr. Lett., Vol. 21, 115-125, 1993.
[2] Safonov, M.G., and R.Y. Chiang, "Model Reduction for Robust Control: A Schur Relative Error Method," International J. of Adaptive Control and Signal Processing, Vol. 2, p. 259-272, 1988.

See Also
reduce | balancmr | hankelmr | schurmr | ncfmr | hankelsv

complexify

Replace ureal atoms by summations of ureal and ucomplex (or ultidyn) atoms

Syntax

```
MC = complexify(M,alpha)
MC = complexify(M,alpha,'ultidyn')
```


Description

The command complexify replaces ureal atoms with sums of ureal and ucomplex atoms using usubs. Optionally, the sum can consist of a ureal and ultidyn atom.
complexify is used to improve the conditioning of robust stability calculations (robuststab) for situations when there are predominantly ureal uncertain elements.
$M C=$ complexify (M, alpha) results in each ureal atom in MC having the same Name and NominalValue as the corresponding ureal atom in M . If Range is the range of one ureal atom from M, then the range of the corresponding ureal atom in $M C$ is
[Range(1)+alpha*diff(Range)/2 Range(2)-alpha*diff(Range)/2]
The net effect is that the same real range is covered with a real and complex uncertainty. The real parameter range is reduced by equal amounts at each end, and alpha represents (in a relative sense) the reduction in the total range. The ucomplex atom will add this reduction in range back into MC, but as a ball with real and imaginary parts.

The ucomplex atom has NominalValue of 0, and Radius equal to alpha*diff(Range). Its name is the name of the original ureal atom, appended with the characters '_cmpxfy'.
$M C=$ complexify (M, alpha, 'ultidyn') is the same, except that gain-bounded ultidyn atoms are used instead of ucomplex atoms. The ultidyn atom has its Bound equal to alpha*diff(Range).

Examples

Complexified Uncertain Parameter

To illustrate complexification, create a uncertain real parameter, cast it to an uncertain matrix, and apply a 10% complexification.

```
a = umat(ureal('a',2.25,'Range',[1.5 3]));
b = complexify(a,.1);
as = usample(a,200);
bs = usample(b,4000);
```

Make a scatter plot of the values that the complexified matrix (scalar) can take, as well as the values of the original uncertain real parameter.

```
plot(real(bs(:)),imag(bs(:)),'.',real(as(:)),imag(as(:)),'r.')
axis([1 3.5 -0.2 0.2])
```


- Getting Reliable Estimates of Robustness Margins

See Also

icomplexify | robuststab

cmsclsyn

Approximately solve constant-matrix, upper bound μ-synthesis problem

Syntax

```
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,qinit);
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure,opt,'random',N)
```


Description

cmsclsyn approximately solves the constant-matrix, upper bound μ-synthesis problem by minimization,

$$
\min _{Q \in C^{r \times t}} \mu_{\Delta}(R+U Q V)
$$

for given matrices $R \in \mathbf{C}^{\mathrm{n}} \mathrm{x}_{\mathrm{m}}, U \in \mathbf{C}^{\mathrm{n}} \mathrm{x}_{\mathrm{r}}, V \in \mathbf{C}^{\mathrm{t}} \mathrm{x}_{\mathrm{m}}$, and a set $\Delta \subset \mathbf{C}^{\mathrm{m}} \mathrm{x}_{\mathrm{n}}$. This applies to constant matrix data in R, U, and V.
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure) minimizes, by choice of Q. QOPT is the optimum value of Q, the upper bound of mussv ($R+U * Q * V, B L K)$, $B N D$. The matrices R, U and V are constant matrices of the appropriate dimension. BlockStructure is a matrix specifying the perturbation blockstructure as defined for mussv.
[QOPT,BND] = cmsclsyn(R,U,V,BlockStructure, OPT) uses the options specified by OPT in the calls to mussv. See mussv for more information. The default value for OPT is 'cUsw'.
[QOPT, BND] = cmsclsyn(R,U,V,BlockStructure,OPT,QINIT) initializes the iterative computation from $\mathrm{Q}=$ QINIT. Because of the nonconvexity of the overall problem, different starting points often yield different final answers. If QINIT is an N-D array, then the iterative computation is performed multiple times - the i'th optimization
is initialized at $\mathrm{Q}=\operatorname{QINIT}(:,:, i)$. The output arguments are associated with the best solution obtained in this brute force approach.
[QOPT, BND] = cmsclsyn(R,U,V,BlockStructure, OPT, 'random', N) initializes the iterative computation from N random instances of QINIT. If NCU is the number of columns of U , and NRV is the number of rows of V , then the approximation to solving the constant matrix μ synthesis problem is two-fold: only the upper bound for μ is minimized, and the minimization is not convex, hence the optimum is generally not found. If U is full column rank, or V is full row rank, then the problem can (and is) cast as a convex problem, [Packard, Zhou, Pandey and Becker], and the global optimizer (for the upper bound for μ) is calculated.

More About

Algorithms

The cmsclsyn algorithm is iterative, alternatively holding Q fixed, and computing the mussv upper bound, followed by holding the upper bound multipliers fixed, and minimizing the bound implied by choice of Q. If U or V is square and invertible, then the optimization is reformulated (exactly) as an linear matrix inequality, and solved directly, without resorting to the iteration.

References

Packard, A.K., K. Zhou, P. Pandey, and G. Becker, "A collection of robust control problems leading to LMI's," 30th IEEE Conference on Decision and Control, Brighton, UK, 1991, p. 1245-1250.

See Also

dksyn | hinfsyn | mussv | robuststab | robustperf

dcgainmr

Reduced order model

Syntax

[sysr,syse,gain] = dcgainmr(sys,ord)

Description

[sysr,syse,gain] = dcgainmr(sys,ord) returns a reduced order model of a continuous-time LTI system SYS by truncating modes with least DC gain.

Specify your LTI continuous-time system in sys. The order is specified in ord.
This function returns:

- sysr-The reduced order models (a multidimensional array if sys is an LTI array)
- syse-The difference between sys and sysr (syse=sys-sysr)
- gain-The g-factors (dc-gains)

The DC gain of a complex mode
$(1 /(s+p)) * c^{*} b^{\prime}$
is defined as
norm(b)*norm(c)/abs(p)

See Also
reduce

decay

Quadratic decay rate of polytopic or affine P-systems

Syntax

[drate, P] = decay(ps,options)

Description

For affine parameter-dependent systems
$E(p) \dot{x}=A(p) x, p(t)=\left(p_{1}(t), \ldots, p_{\mathrm{n}}(t)\right)$
or polytopic systems
$\left.E(t) \dot{x}=A(t) x,(A, E) \in \operatorname{Co}\left\{\left(A_{1}, E_{1}\right), \ldots,\left(A \mathrm{n}, E_{\mathrm{n}}\right)\right\}, t\right) \dot{x}=A(t) x,(A, E) \in \operatorname{Co}\left\{\left(A_{1}, E_{1}\right), \ldots,(A \mathrm{n}\right.$, $\left.\left.E_{\mathrm{n}}\right)\right\}$,
decay returns the quadratic decay rate drate, i.e., the smallest $\alpha \in R$ such that $A^{\mathrm{T}} Q E+E Q A^{\mathrm{T}}<\alpha Q$
holds for some Lyapunov matrix $Q>0$ and all possible values of (A, E). Two control parameters can be reset via options (1) and options (2):

- If options (1) $=0$ (default), decay runs in fast mode, using the least expensive sufficient conditions. Set options (1)=1 to use the least conservative conditions.
- options(2) is a bound on the condition number of the Lyapunov matrix P. The default is 109 .

See Also

quadstab | psys | pdlstab

decinfo

Describe how entries of matrix variable X relate to decision variables

Syntax

```
decinfo(lmisys)
decX = decinfo(lmisys,X)
```


Description

The function decinfo expresses the entries of a matrix variable X in terms of the decision variables x_{1}, \ldots, x_{N}. Recall that the decision variables are the free scalar variables of the problem, or equivalently, the free entries of all matrix variables described in lmisys. Each entry of X is either a hard zero, some decision variable x_{n}, or its opposite $-x_{n}$.

If X is the identifier of X supplied by lmivar, the command
dec X = decinfo(lmisys, X)
returns an integer matrix dec X of the same dimensions as X whose (i, j) entry is

- 0 if $X(i, j)$ is a hard zero
- n if $X(i, j)=x_{n}$ (the n-th decision variable)
- $-n$ if $X(i, j)=-x_{n}$
decX clarifies the structure of X as well as its entry-wise dependence on x_{1}, \ldots, x_{N}. This is useful to specify matrix variables with atypical structures (see lmivar).
decinfo can also be used in interactive mode by invoking it with a single argument. It then prompts the user for a matrix variable and displays in return the decision variable content of this variable.

Examples

Example 1

Consider an LMI with two matrix variables X and Y with structure:

- $X=x I_{3}$ with x scalar
- Y rectangular of size 2-by-1

If these variables are defined by

```
setlmis([])
X = lmivar(1,[3 0])
Y = lmivar(2,[2 1])
    :
:
lmis = getlmis
```

the decision variables in X and Y are given by
dX = decinfo(lmis, X)
dX =
100
$0 \quad 1 \quad 0$
$0 \quad 0 \quad 1$
dY = decinfo(lmis, Y)
$d Y=$
2
3

This indicates a total of three decision variables x_{1}, x_{2}, x_{3} that are related to the entries of X and Y by

$$
X=\left(\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{1} & 0 \\
0 & 0 & x_{1}
\end{array}\right), Y=\binom{x_{2}}{x 3}
$$

Note that the number of decision variables corresponds to the number of free entries in X and Y when taking structure into account.

Example 2

Suppose that the matrix variable X is symmetric block diagonal with one 2-by-2 full block and one 2 -by- 2 scalar block, and is declared by

```
setlmis([])
X = lmivar(1,[2 1;2 0])
    :
lmis = getlmis
```

The decision variable distribution in X can be visualized interactively as follows:

```
decinfo(lmis)
There are 4 decision variables labeled x1 to x4 in this problem.
Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):
?> 1
The decision variables involved in X1 are among {-x1,\ldots,.,x4}.
Their entry-wise distribution in X1 is as follows
    (0,j>0,-j<0 stand for 0,xj,-xj, respectively):
X1 :
    120}
    2
    0}004
    0}00\quad0\quad
Matrix variable Xk of interest (enter k between 1 and 1, or 0 to quit):
?> 0
```


See Also

lmivar | mat2dec | dec2mat

decnbr

Total number of decision variables in system of LMIs

Syntax

```
ndec = decnbr(lmisys)
```


Description

The function decnbr returns the number ndec of decision variables (free scalar variables) in the LMI problem described in lmisys. In other words, ndec is the length of the vector of decision variables.

Examples

For an LMI system lmis with two matrix variables X and Y such that

- X is symmetric block diagonal with one 2-by-2 full block, and one 2 -by- 2 scalar block
- Y is 2-by- 3 rectangular,
the number of decision variables is

```
ndec = decnbr(LMIs)
ndec =
    10
```

This is exactly the number of free entries in X and Y when taking structure into account (see decinfo for more details).

See Also
dec2mat | decinfo | mat2dec

dec2mat

Given values of decision variables, derive corresponding values of matrix variables

Syntax

```
valX = dec2mat(lmisys,decvars,X)
```


Description

Given a value decvars of the vector of decision variables, dec2mat computes the corresponding value valX of the matrix variable with identifier X. This identifier is returned by lmivar when declaring the matrix variable.

Recall that the decision variables are all free scalar variables in the LMI problem and correspond to the free entries of the matrix variables X_{1}, \ldots, X_{K}. Since LMI solvers return a feasible or optimal value of the vector of decision variables, dec2mat is useful to derive the corresponding feasible or optimal values of the matrix variables.

Examples

See the description of feasp.

See Also
mat2dec | decnbr | decinfo

defcx

Help specify $c^{T} x$ objectives for mincx solver

Syntax

$[\mathrm{V} 1, \ldots, \mathrm{Vk}]=\operatorname{defcx}($ lmisys $, \mathrm{n}, \mathrm{X} 1, \ldots, \mathrm{Xk})$

Description

defcx is useful to derive the c vector needed by mincx when the objective is expressed in terms of the matrix variables.

Given the identifiers $\mathrm{X} 1, \ldots, \mathrm{Xk}$ of the matrix variables involved in this objective, defcx returns the values $\mathrm{V} 1, \ldots$, Vk of these variables when the n-th decision variable is set to one and all others to zero.

See Also
mincx \| decinfo

dellmi

Remove LMI from system of LMIs

Syntax

```
newsys = dellmi(lmisys,n)
```


Description

dellmi deletes the n-th LMI from the system of LMIs described in lmisys. The updated system is returned in newsys.

The ranking n is relative to the order in which the LMIs were declared and corresponds to the identifier returned by newlmi. Since this ranking is not modified by deletions, it is safer to refer to the remaining LMIs by their identifiers. Finally, matrix variables that only appeared in the deleted LMI are removed from the problem.

Examples

Suppose that the three LMIs

$$
\begin{aligned}
& A_{1}^{T} X_{1}+X_{1} A_{1}+Q_{1}<0 \\
& A_{2}^{T} X_{2}+X_{2} A_{2}+Q_{2}<0 \\
& A_{3}^{T} X_{3}+X_{3} A_{3}+Q_{3}<0
\end{aligned}
$$

have been declared in this order, labeled LMI 1, LMI2, LMI3 with newlmi, and stored in lmisys. To delete the second LMI, type
lmis = dellmi(lmisys,LMI2)
lmis now describes the system of LMIs

$$
\begin{aligned}
& A_{1}^{T} X_{1}+X_{1} A_{1}+Q_{1}<0 \\
& A_{3}^{T} X_{3}+X_{3} A_{3}+Q_{3}<0
\end{aligned}
$$

and the second variable X_{2} has been removed from the problem since it no longer appears in the system.

To further delete LMI3 from the system, type
lmis = dellmi(lmis,LMI3)
or equivalently
lmis = dellmi(lmis,3)
Note that the system has retained its original ranking after the first deletion.

```
See Also
newlmi| lmiedit | lmiinfo
```


delmvar

Remove one matrix variable from LMI problem

Syntax

newsys = delmvar(lmisys, X)

Description

delmvar removes the matrix variable X with identifier X from the list of variables defined in lmisys. The identifier X should be the second argument returned by lmivar when declaring X. All terms involving X are automatically removed from the list of LMI terms. The description of the resulting system of LMIs is returned in newsys.

Examples

Consider the LMI

$$
0<\left(\begin{array}{cc}
A^{T} Y+B^{T} Y A+Q & C X+D \\
X^{T} C^{T}+D^{T} & -\left(X+X^{T}\right)
\end{array}\right)
$$

involving two variables X and Y with identifiers X and Y . To delete the variable X, type

```
lmisys = delmvar(lmisys,X)
```

Now lmisys describes the LMI

$$
0<\left(\begin{array}{cc}
A^{T} Y B+B^{T} Y A+Q & D \\
D^{T} & 0
\end{array}\right)
$$

with only one variable Y. Note that Y is still identified by the label Y.

See Also
lmivar | setmvar | lmiinfo

diag

Diagonalize vector of uncertain matrices and systems

Syntax

v = diag(x)

Description

If x is a vector of uncertain system models or matrices, diag (x) puts x on the main diagonal. If x is a matrix of uncertain system models or matrices, $\operatorname{diag}(x)$ is the main diagonal of x. diag $(\operatorname{diag}(x))$ is a diagonal matrix of uncertain system models or matrices.

Examples

The statement produces a diagonal system $m \times g$ of size 4-by-4. Given multivariable system xx , a vector of the diagonal elements of xxg is found using diag.

```
x = rss(3,4,1);
xg = frd(x,logspace(-2,2,80));
size(xg)
FRD model with 4 output(s) and 1 input(s), at 80 frequency point(s).
mxg = diag(xg);
size(mxg)
FRD model with 4 output(s) and 4 input(s), at 80 frequency point(s).
xxg = [xg(1:2,1) xg(3:4,1)];
m = diag(xxg);
size(m)
FRD model with 2 output(s) and 1 input(s), at 80 frequency point(s).
```


See Also

append

dksyn

Robust controller design using μ-synthesis

Syntax

```
[k,clp,bnd] = dksyn(p,nmeas,ncont)
[k,clp,bnd] = dksyn(p,nmeas,ncont,opt)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,...)
[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt)
    [...] = dksyn(p)
```


Description

[k,clp,bnd] = dksyn(p,nmeas, ncont) synthesizes a robust controller k for the uncertain open-loop plant model p via the D-K or D-G-K algorithm for μ-synthesis. p is an uncertain state-space uss model. The last nmeas outputs and ncont inputs of p are assumed to be the measurement and control channels. k is the controller, clp is the closed-loop model and bnd is the robust closed-loop performance bound. p, k, clp, and bnd are related as follows:

```
clp = lft(p,k);
bnd1 = robustperf(clp);
bnd = 1/bnd.LowerBound
```

[k,clp,bnd] = dksyn(p,nmeas, ncont,opt) specifies user-defined options opt for the D-K or D-K-G algorithm. Use dksynOptions to create opt.
[k,clp,bnd,dkinfo] = dksyn(p, nmeas, ncont, ...) returns a log of the algorithm execution in dkinfo. dkinfo is an N-by- 1 cell array where N is the total number of iterations performed. The ith cell contains a structure with the following fields:

Field	Description
K	Controller at ith iteration, a ss object

Field	Description
Bnds	Robust performance bound on the closed-loop system (double)
DL	Left D-scale, an ss object
DR	Right D-scale, an ss object
GM	Offset G-scale, an ss object
GR	Right G-scale, an ss object
GFC	Center G-scale, an ss object
MussvBnds	Upper and lower μ bounds, an frd object
MussvInfo	Structure returned from mussv at each iteration.

[k,clp,bnd,dkinfo] = dksyn(p,nmeas,ncont,prevdkinfo,opt) allows you to use information from a previous dksyn iteration. prevdkinfo is a structure from a previous attempt at designing a robust controller using dksyn. prevdkinfo is used when the dksyn starting iteration is not 1 (opt.StartingIterationNumber $=1$) to determine the correct D -scalings to initiate the iteration procedure.
$[\ldots]=d k s y n(p)$ takes p as a uss object that has two-input/two-output partitioning as defined by mktito.

Examples

The following statements create a robust performance control design for an unstable, uncertain single-input/single-output plant model. The nominal plant model, G, is an unstable first order system $\frac{s}{s-1}$.
$G=t f\left(1,\left[\begin{array}{ll}1 & -1\end{array}\right]\right.$;
The model itself is uncertain. At low frequency, below $2 \mathrm{rad} / \mathrm{s}$, it can vary up to 25% from its nominal value. Around $2 \mathrm{rad} / \mathrm{s}$ the percentage variation starts to increase and reaches 400% at approximately $32 \mathrm{rad} / \mathrm{s}$. The percentage model uncertainty is represented by the weight Wu which corresponds to the frequency variation of the model uncertainty and the uncertain LTI dynamic object InputUnc.

```
Wu = 0.25*tf([1/2 1],[1/32 1]);
InputUnc = ultidyn('InputUnc',[1 1]);
```

The uncertain plant model Gpert represents the model of the physical system to be controlled.

```
Gpert = G*(1+InputUnc*Wu);
```

The robust stability objective is to synthesize a stabilizing LTI controller for all the plant models parameterized by the uncertain plant model, Gpert. The performance objective is defined as a weighted sensitivity minimization problem. The control interconnection structure is shown in the following figure.

The sensitivity function, S , is defined as

$$
S=\frac{1}{1+P K}
$$

where P is the plant model and K is the controller. A weighted sensitivity minimization problem selects a weight Wp, which corresponds to the inverse of the desired sensitivity function of the closed-loop system as a function of frequency. Hence the product of the sensitivity weight Wp and actual closed-loop sensitivity function is less than 1 across all frequencies. The sensitivity weight W p has a gain of 100 at low frequency, begins to decrease at $0.006 \mathrm{rad} / \mathrm{s}$, and reaches a minimum magnitude of $0.25 \mathrm{after} 2.4 \mathrm{rad} / \mathrm{s}$.

```
Wp = tf([1/4 0.6],[1 0.006]);
```

The defined sensitivity weight Wp implies that the desired disturbance rejection should be at least 100:1 disturbance rejection at DC, rise slowly between 0.006 and $2.4 \mathrm{rad} / \mathrm{s}$,
and allow the disturbance rejection to increase above the open-loop level, 0.25 , at high frequency.

When the plant model is uncertain, the closed-loop performance objective is to achieve the desired sensitivity function for all plant models defined by the uncertain plant model, Gpert. The performance objective for an uncertain system is a robust performance objective. A block diagram of this uncertain closed-loop system illustrating the performance objective (closed-loop transfer function from $d \rightarrow e$) is shown.

From the definition of the robust performance control objective, the weighted, uncertain control design interconnection model, which includes the robustness and performance objectives, can be constructed and is denoted by P. The robustness and performance weights are selected such that if the robust performance structure singular value, bnd, of the closed-loop uncertain system, clp, is less than 1 then the performance objectives have been achieved for all the plant models in the model set.

You can form the uncertain transfer matrix P from [d; u] to [e; y] using the following commands.

```
P = [Wp; 1 ]*[1 Gpert];
[K,clp,bnd] = dksyn(P,1,1);
bnd
bnd =
    0.6819
```

The controller K achieves a robust performance μ value bnd of 0.6819 . Therefore you have achieved the robust performance objectives for the given problem.

You can use the robustperf command to analyze the closed-loop robust performance of clp.

```
[rpmarg,rpmargunc,report,info] = robustperf(clp);
```

Enter disp(report) to display the report.

Limitations

There are two shortcomings of the D-K iteration control design procedure:

- Calculation of the structured singular value $\mu \Delta(\cdot)$ is approximated by its upper bound. This is not a serious problem because the value of μ and its upper bound are often close.
- The D-K iteration is not guaranteed to converge to a global, or even local minimum. This is a serious problem, and represents the biggest limitation of the design procedure.

In spite of these drawbacks, the D-K iteration control design technique appears to work well on many engineering problems. It has been applied to a number of real-world applications with success. These applications include vibration suppression for flexible structures, flight control, chemical process control problems, and acoustic reverberation suppression in enclosures.

Tutorials

Control of Spring-Mass-Damper Using Mixed mu-Synthesis

More About

Algorithms

dksyn synthesizes a robust controller via D-K iteration. The D-K iteration procedure is an approximation to μ-synthesis control design. The objective of μ-synthesis is to minimize the structure singular value μ of the corresponding robust performance problem associated with the uncertain system p. The uncertain system p is an openloop interconnection containing known components including the nominal plant model, uncertain parameters, ucomplex, and unmodeled LTI dynamics, ultidyn, and performance and uncertainty weighting functions. You use weighting functions to include magnitude and frequency shaping information in the optimization. The control objective
is to synthesize a stabilizing controller k that minimizes the robust performance μ value, which corresponds to bnd.

The D-K iteration procedure involves a sequence of minimizations, first over the controller variable K (holding the D variable associated with the scaled μ upper bound fixed), and then over the D variable (holding the controller K variable fixed). The D-K iteration procedure is not guaranteed to converge to the minimum μ value, but often works well in practice.
dksyn automates the D-K iteration procedure and the options object dksynOptions allows you to customize its behavior. Internally, the algorithm works with the generalized scaled plant model P , which is extracted from a uss object using the command lftdata.

The following is a list of what occurs during a single, complete step of the D-K iteration.
1 (In the first iteration, this step is skipped.) The μ calculation (from the previous step) provides a frequency-dependent scaling matrix, D_{f}. The fitting procedure fits these scalings with rational, stable transfer function matrices. After fitting, plots of
$\bar{\sigma}\left(\hat{D}_{f}(j \omega) F_{L}(P, K)(j \omega) D_{f}^{-1}(j \omega)\right)$
and

$$
\bar{\sigma}\left(\hat{D}_{f}(j \omega) F_{L}(P, K)(j \omega) \hat{D}_{f}^{-1}(j \omega)\right)
$$

are shown for comparison.
(In the first iteration, this step is skipped.) The rational \hat{D} is absorbed into the openloop interconnection for the next controller synthesis. Using either the previous frequency-dependent D 's or the just-fit rational \hat{D}, an estimate of an appropriate value for the H_{∞} norm is made. This is simply a conservative value of the scaled closed-loop H_{∞} norm, using the most recent controller and either a frequency sweep (using the frequency-dependent D 's) or a state-space calculation (with the rational D's).
2 (The first iteration begins at this point.) A controller is designed using H_{∞} synthesis on the scaled open-loop interconnection. If you set the DisplayWhileAutoIter field in dksynOptions to ' on ', the following information is displayed:
a The progress of the γ-iteration is displayed.
b The singular values of the closed-loop frequency response are plotted.
c You are given the option to change the frequency range. If you change it, all relevant frequency responses are automatically recomputed.
d You are given the option to rerun the H_{∞} synthesis with a set of modified parameters if you set the AutoIter field in dksynOptions to 'off'. This is convenient if, for instance, the bisection tolerance was too large, or if maximum gamma value was too small.

3 The structured singular value of the closed-loop system is calculated and plotted.
4 An iteration summary is displayed, showing all the controller order, as well as the peak value of μ of the closed-loop frequency responses.
5 The choice of stopping or performing another iteration is given.
Subsequent iterations proceed along the same lines without the need to reenter the iteration number. A summary at the end of each iteration is updated to reflect data from all previous iterations. This often provides valuable information about the progress of the robust controller synthesis procedure.

Interactive Fitting of D-Scalings

Setting the AutoIter field in dksynOptions to 'off ' requires that you interactively fit the D-scales each iteration. During step 2 of the D-K iteration procedure, you are prompted to enter your choice of options for fitting the D-scaling data. You press return after, the following is a list of your options.

```
Enter Choice (return for list):
Choices:
nd Move to Next D-Scaling
nb Move to Next D-Block
i Increment Fit Order
d Decrement Fit Order
apf Auto-PreFit
mx 3 Change Max-Order to 3
at 1.01 Change Auto-PreFit tol to 1.01
0 Fit with zeroth order
2 Fit with second order
n Fit with n'th order
```

e Exit with Current Fittings
S
See Status

- nd and nb allow you to move from one D-scale data to another. nd moves to the next scaling, whereas nb moves to the next scaling block. For scalar D-scalings, these are identical operations, but for problems with full D-scalings, (perturbations of the form $8 I)$ they are different. In the $(1,2)$ subplot window, the title displays the D-scaling block number, the row/column of the scaling that is currently being fitted, and the order of the current fit (with d for data when no fit exists).
- You can increment or decrement the order of the current fit (by 1) using i and d.
- apf automatically fits each D-scaling data. The default maximum state order of individual D-scaling is 5 . The $m x$ variable allows you to change the maximum D scaling state order used in the automatic prefitting routine. mx must be a positive, nonzero integer. at allows you to define how close the rational, scaled μ upper bound is to approximate the actual μ upper bound in a norm sense. Setting at to 1 would require an exact fit of the D-scale data, and is not allowed. Allowable values for at are greater than 1 . This setting plays a role (mildly unpredictable, unfortunately) in determining where in the (D, K) space the D-K iteration converges.
- Entering a positive integer at the prompt will fit the current D-scale data with that state order rational transfer function.
- e exits the D-scale fitting to continue the D-K iteration.
- The variable s displays a status of the current and fits.

References

[1] Balas, G.J., and J.C. Doyle, "Robust control of flexible modes in the controller crossover region," AIAA Journal of Guidance, Dynamics and Control, Vol. 17, no. 2, March-April, 1994, p. 370-377.
[2] Balas, G.J., A.K. Packard, and J.T. Harduvel, "Application of μ-synthesis techniques to momentum management and attitude control of the space station," AIAA Guidance, Navigation and Control Conference, New Orleans, August 1991.
[3] Doyle, J.C., K. Lenz, and A. Packard, "Design examples using μ-synthesis: Space shuttle lateral axis FCS during reentry," NATO ASI Series, Modelling, Robustness, and Sensitivity Reduction in Control Systems, vol. 34, SpringerVerlag, Berlin 1987.
[4] Packard, A., J. Doyle, and G. Balas, "Linear, multivariable robust control with a μ perspective," ASME Journal of Dynamic Systems, Measurement and Control, 50th Anniversary Issue, Vol. 115, no. 2b, June 1993, p. 310-319.
[5] Stein, G., and J. Doyle, "Beyond singular values and loopshapes," AIAA Journal of Guidance and Control, Vol. 14, No. 1, January, 1991, p. 5-16.

See Also
dksynOptions | mktito | mussv | h2syn | hinfsyn | robuststab | robustperf | wcgain | wcsens | wcmargin

dksynOptions

Set options for dksyn

Syntax

```
opt = dksynOptions
```

opt = dksynOptions(Name, Value)

Description

opt $=$ dksynOptions returns the default options for dksyn.
opt $=$ dksynOptions(Name, Value) returns an option set with additional options specified by one or more Name, Value pair arguments.

Input Arguments

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
dksynOptions takes the following Name arguments:

'FrequencyVector'

Frequencies for mu-analysis, specified as a vector. When empty, dksyn automatically chooses the frequency range and number of points.

Default: []

'InitialController'

Controller for initializing first iteration, specified as a state-space (ss) model.

Default: []

'AutoIter'

Automated mu-synthesis mode, specified as one of the strings 'on' or 'off'. When automated mu-synthesis mode is off, dksyn performs an interactive D-K iteration procedure. You are prompted to fit the D-scale data and provide input on the control design process.

Default: 'on '

'DisplayWhileAutoIter'

Status of display in automated mu-synthesis mode, specified as one of the strings 'off' or 'on'. When the display is on, and automated mu-synthesis mode is active, dksyn displays the iteration progress during the synthesis computation.

Default: 'off'

'StartingIterationNumber'

Iteration number for initiating iteration procedure, specified as a positive integer. Use this option when you provide the prevdkinfo argument to dksyn to use information from a previous dksyn calculation. In this case, specify the starting iteration number from which to resume the iteration procedure.

Default: 1

'NumberOfAutoIterations'

Number of iterations to perform in automatic mu-synthesis mode, specified as a positive integer.

Default: 10

'MixedMU'

Flag indicating whether to perform mixed real/complex mu-synthesis when real parameters are present, specified as one of the strings 'off' or 'on'. Mixed musynthesis accounts for uncertain real parameters directly in the synthesis process. Setting 'MixedMU' to 'on' when you have uncertain real parameters can result in improved robust performance of the synthesized controller.

Default: 'off'

'AutoScalingOrder'

State order for fitting D-scaling and G-scaling data for real/complex mu-synthesis, specified as a vector of the form [dorder, gorder].

Default: [5 2] (5th-order D-scalings and 2nd-order G-scalings)

'AutoIterSmartTerminate'

Automatic termination mode, specified as one of the strings 'on' or 'off'. When AutoIterSmartTerminate is ' on ', the iteration procedure terminates based on the progress of the design iteration. Set the tolerance for automatic termination using AutoIterSmartTerminateTol.

In automatic termination mode, the iteration procedure terminates when a stopping criterion is satisfied. The stopping criterion involves the objective value (peak value, across frequency, of the upper bound for μ) in the current iteration, denoted v_{0}. The stopping criterion also involves the objective value in the previous two iterations, denoted v_{-1} and v_{-2}. The stopping criterion is satisfied for lack of progress if:

$$
\left|v_{0}-v_{-1}\right|<\text { AutoIterSmartTerminateTol } *_{0}
$$

and

$$
\left|v_{-1}-v_{-2}\right|<\text { AutoIterSmartTerminateTol } * v_{0} .
$$

The stopping criteria is also satisfied for an undesirable significant increase in the objective value if:
$v_{0}>v_{-1}+20 *$ AutoIterSmartTerminateTol ${ }^{*} v_{0}$.
Default: 'on '

'AutoIterSmartTerminateTol'

Tolerance for AutoIterSmartTerminate mode.
Default: 0.005

Output Arguments

options

Option set containing the specified options for the dksyn command.

Examples

Create Options Set for dksyn

Create an options set for a dksyn run using a logarithmic distribution of frequency points for analysis and performing 24 iterations.

```
options = dksynOptions('FrequencyVector',logspace(-2,3,80),\ldots
    'NumberOfAutoIterations',24);
```

Alternatively, use dot notation to set the values of options.

```
options = dksynOptions;
options.FrequencyVector = logspace(-2,3,80);
options.NumberOfAutoIterations = 24;
```


See Also

| dksyn

dmplot

Interpret disk gain and phase margins

Syntax

dmplot

```
dmplot(diskgm)
```

[dgm,dpm] = dmplot

Description

dmplot plots disk gain margin (dgm) and disk phase margin (dpm). Both margins are derived from the largest disk that

- Contains the critical point $(-1,0)$
- Does not intersect the Nyquist plot of the open-loop response L
diskgm is the radius of this disk and a lower bound on the classical gain margin.
dmplot (diskgm) plots the maximum allowable phase variation as a function of the actual gain variation for a given disk gain margin diskgm (the maximum gain variation being diskgm). The closed-loop system is guaranteed to remain stable for all combined gain/phase variations inside the plotted ellipse.
[dgm, dpm] = dmplot returns the data used to plot the gain/phase variation ellipse.

Examples

When you call dmplot (without an argument), the resulting plot shows a comparison of a disk margin analysis with the classical notations of gain and phase margins. The Nyquist plot is of the loop transfer function $\mathrm{L}(\mathrm{s})$

$$
L(s)=\frac{\frac{s}{30}+1}{(s+1)\left(s^{2}+1.6 s+16\right)}
$$

dmplot

This figure shows a comparison of a disk margin analysis with the classical notations of gain and phase margins. The Nyquist plot is of the loop transfer function

$$
L=4(s / 30+1) /\left((s+1) *\left(s^{\wedge} 2+1.6 s+16\right)\right)
$$

- The Nyquist plot of L corresponds to the blue line
- The unit disk corresponds to the dotted red line
- GM and PM indicate the location of the classical gain and phase margins for the system L.
- DGM and DPM correspond to the disk gain and phase margins. The disk margins provide a lower bound on classical gain and phase margins.
- The disk margin circle corresponds to the dashed black line. The disk margin corresponds to the largest disk centered at (GMD + 1/GMD)/2 that just touches the loop transfer function L. This location is indicated by the red dot.

- The Nyquist plot of L corresponds to the blue line.
- The unit disk corresponds to the dotted red line.
- GM and PM indicate the location of the classical gain and phase margins for the system L.
- DGM and DPM correspond to the disk gain and phase margins, respectively. The disk margins provide a lower bound on classical gain and phase margins.
- The disk margin circle, represented by the dashed black line, corresponds to the largest disk centered at (DGM + 1/DGM) / 2 that just touches the loop transfer function L. This location is indicated by the red dot.

The x-axis corresponds to the gain variation, in dB , and the y-axis corresponds to the phase variation allowable, in degrees. For a disk gain margin corresponding to 3 dB (1.414), the closed-loop system is stable for all phase and gain variations inside the blue ellipse. For example, the closed-loop system can simultaneously tolerate $+/-2 \mathrm{~dB}$ gain variation and $+/-14$ deg phase variations.
dmplot(1.414)
Allowable Gain/Phase Variations for a 1.41 Disk Gain Margin. (stability is guaranteed for all variations inside the ellipse)

References

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems, Ph.D. Thesis. Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and Gangsass, D., "Practical control law design for aircraft using multivariable techniques," International Journal of Control, Vol. 59, No. 1, 1994, 93-137.

Bates, D., and I. Postlethwaite, Robust Multivariable Control of Aerospace Systems, Delft University Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

See Also

wcmargin

drawmag

Mouse-based tool for sketching and fitting

Syntax

```
[sysout,pts] = drawmag(data)
[sysout,pts] = drawmag(data,init_pts)
```


Description

drawmag interactively uses the mouse in the plot window to create pts (the frd object) and sysout (a stable minimum-phase ss object), which approximately fits the frequency response (magnitude) in pts .

Input arguments:

data	Either a frequency response object that is plotted as a reference, or a constant matrix of the form $\left[x_{\min } x_{\max } y_{\min } y_{\max }\right]$ specifying the plot window on the data.
init_pts	Optional frd objects of initial set of points

Output arguments:

sysout	Stable, minimum-phase ss object that approximately fits, in magnitude, the pts data.
pts	Frequency response of points.

While drawmag is running, all interaction with the program is through the mouse and/ or the keyboard. The mouse, if there is one, must be in the plot window. The program recognizes several commands:

- Clicking the mouse button adds a point at the cross-hairs. If the cross-hairs are outside the plotting window, the points are plotted when the fitting, windowing, or replotting mode is invoked. Typing a is the same as clicking the mouse button.
- Typing r removes the point with frequency nearest that of the cross-hairs.
- Typing any integer between 0 and 9 fits the existing points with a transfer function of that order. The fitting routine approximately minimizes the maximum error in a \log sense. The new fit is displayed along with the points, and the most recent previous fit, if it exists.
- Typing w uses the cross-hair location as the initial point in creating a window. Moving the cross-hairs and clicking the mouse or pressing any key then gives a second point at the new cross-hair location. These two points define a new window on the data, which is immediately replotted. This is useful in fine tuning parts of the data. You can call windowing repeatedly.
- Typing p simply replots the data using a window that covers all the current data points as well as whatever was specified in in. Typically used after windowing to view all the data.
- Typing k invokes the keyboard using the keyboard command. Be cautious when using this option to avoid unintended changes to variables.

See Also

ginput | loglog

evallmi

Given particular instance of decision variables, evaluate all variable terms in system of LMIs

Syntax

evalsys = evallmi(lmisys,decvars)

Description

evallmi evaluates all LMI constraints for a particular instance decvars of the vector of decision variables. Recall that decvars fully determines the values of the matrix variables X_{1}, \ldots, X_{K}. The "evaluation" consists of replacing all terms involving X_{1}, \ldots, X_{K} by their matrix value. The output evalsys is an LMI system containing only constant terms.

The function evallmi is useful for validation of the LMI solvers' output. The vector returned by these solvers can be fed directly to evallmi to evaluate all variable terms. The matrix values of the left and right sides of each LMI are then returned by showlmi.

Observation

evallmi is meant to operate on the output of the LMI solvers. To evaluate all LMIs for particular instances of the matrix variables X_{1}, \ldots, X_{K}, first form the corresponding decision vector x with mat2dec and then call evallmi with x as input.

Examples

Consider the feasibility problem of finding $X>0$ such that
$A^{T} X A-X+I<0$
where

$$
A=\left(\begin{array}{ll}
0.5 & -0.2 \\
0.1 & -0.7
\end{array}\right)
$$

This LMI system is defined by:

```
setlmis([])
X = lmivar(1,[2 1]) % full symmetric X
lmiterm([1 1 1 1 X X],A',A) % LMI #1: A'*X*A
lmiterm([1 1 1 1 X],-1,1) % LMI #1: -X
lmiterm([1 1 1 0],1) % LMI #1: I
lmiterm([-2 1 1 X],1,1) % LMI #2: X
lmis = getlmis
```

To compute a solution xfeas, call feasp by

```
[tmin,xfeas] = feasp(lmis)
```

The result is

```
tmin =
    -4.7117e+00
xfeas' =
    1.1029e+02 -1.1519e+01 1.1942e+02
```

The LMI constraints are therefore feasible since tmin <0. The solution X corresponding to the feasible decision vector xfeas would be given by $X=\operatorname{dec} 2 m a t(l m i s, x f e a s, X)$.

To check that xfeas is indeed feasible, evaluate all LMI constraints by typing

```
evals = evallmi(lmis,xfeas)
```

The left and right sides of the first and second LMIs are then given by

```
[lhs1,rhs1] = showlmi(evals,1)
[lhs2,rhs2] = showlmi(evals,2)
```

and the test

```
eig(lhs1-rhs1)
ans =
    -8.2229e+01
    -5.8163e+01
```

confirms that the first LMI constraint is satisfied by xfeas.

```
See Also
showlmi | setmvar | dec2mat | mat2dec
```


feasp

Compute solution to given system of LMIs

Syntax

[tmin, xfeas] = feasp(lmisys,options,target)

Description

The function feasp computes a solution xfeas (if any) of the system of LMIs described by lmisys. The vector xfeas is a particular value of the decision variables for which all LMIs are satisfied.

Given the LMI system

$$
N^{T} L x N \leq M^{T} R(x) M
$$

xfeas is computed by solving the auxiliary convex program:
Minimize t subject to $N^{T} L(x) N-M^{T} R(\mathrm{x}) M \leq t I$.
The global minimum of this program is the scalar value tmin returned as first output argument by feasp. The LMI constraints are feasible if $\mathrm{tmin} \leq 0$ and strictly feasible if $\mathrm{tmin}<0$. If the problem is feasible but not strictly feasible, tmin is positive and very small. Some post-analysis may then be required to decide whether xfeas is close enough to feasible.

The optional argument target sets a target value for tmin. The optimization code terminates as soon as a value of t below this target is reached. The default value is target $=0$.

Note that xfeas is a solution in terms of the decision variables and not in terms of the matrix variables of the problem. Use dec2mat to derive feasible values of the matrix variables from xfeas.

Control Parameters

The optional argument options gives access to certain control parameters for the optimization algorithm. This five-entry vector is organized as follows:

- options(1) is not used.
- options(2) sets the maximum number of iterations allowed to be performed by the optimization procedure (100 by default).
- options(3) resets the feasibility radius. Setting options(3) to a value $R>0$ further constrains the decision vector $x=\left(x_{1}, \ldots, x_{N}\right)$ to lie within the ball

$$
\sum_{i=1}^{N} x_{i}^{2}<R^{2}
$$

In other words, the Euclidean norm of xfeas should not exceed R. The feasibility radius is a simple means of controlling the magnitude of solutions. Upon termination, feasp displays the f-radius saturation, that is, the norm of the solution as a percentage of the feasibility radius R.

The default value is $R=109$. Setting options (3) to a negative value activates the "flexible bound" mode. In this mode, the feasibility radius is initially set to 108, and increased if necessary during the course of optimization

- options (4) helps speed up termination. When set to an integer value $J>0$, the code terminates if t did not decrease by more than one percent in relative terms during the last J iterations. The default value is 10 . This parameter trades off speed vs. accuracy. If set to a small value (<10), the code terminates quickly but without guarantee of accuracy. On the contrary, a large value results in natural convergence at the expense of a possibly large number of iterations.
- options (5) = 1 turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value. Consequently, there is no need to redefine the entire vector when changing just one control parameter. To set the maximum number of iterations to 10 , for instance, it suffices to type

```
options=zeros(1,5) % default value for all parameters
options(2)=10
```


Memory Problems

When the least-squares problem solved at each iteration becomes ill conditioned, the feasp solver switches from Cholesky-based to QR-based linear algebra (see "Memory Problems" on page 1-223 for details). Since the QR mode typically requires much more memory, MATLAB ${ }^{\circledR}$ may run out of memory and display the message

```
??? Error using ==> feaslv
Out of memory. Type HELP MEMORY for your options.
```

You should then ask your system manager to increase your swap space or, if no additional swap space is available, set options (4) = 1. This will prevent switching to QR and feasp will terminate when Cholesky fails due to numerical instabilities.

Examples

Consider the problem of finding $P>I$ such that

$$
\begin{aligned}
& A_{1}^{T} P+P A_{1}<0 \\
& A_{2}^{T} P+P A_{2}<0 \\
& A_{3}^{T} P+P A_{3}<0
\end{aligned}
$$

with data

$$
A 1=\left(\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right), A 2=\left(\begin{array}{cc}
-0.8 & 1.5 \\
1.3 & -2.7
\end{array}\right), A 3=\left(\begin{array}{cc}
-1.4 & 0.9 \\
0.7 & -2.0
\end{array}\right)
$$

This problem arises when studying the quadratic stability of the polytope of matrices $\operatorname{Co}\left\{A_{1}, A_{2}, A_{3}\right\}$.

To assess feasibility with feasp, first enter the LMIs Equation 1-4 -Equation 1-6:

```
setlmis([])
p = lmivar(1,[2 1])
```

```
lmiterm([1 1 1 1 1 p],1,a1,'s') % LMI #1
lmiterm([2 1 1 p],1,a2,'s') % LMI #2
lmiterm([3 1 1 1 p],1,a3,'s') % LMI #3
lmiterm([-4 1 1 p],1,1) % LMI #4: P
lmiterm([4 4 1 1 0],1) % LMI #4: I
lmis = getlmis
```

Then call feasp to find a feasible decision vector:

```
[tmin,xfeas] = feasp(lmis)
```

This returns tmin $=-3.1363$. Hence Equation 1-4 - Equation 1-6 is feasible and the dynamical system $\dot{x}=A(t) x$ is quadratically stable for $A(t) \in \operatorname{Co}\left\{A_{1}, A_{2}, A_{3}\right\}$.

To obtain a Lyapunov matrix P proving the quadratic stability, type

```
P = dec2mat(lmis,xfeas,p)
```

This returns

$$
P=\left(\begin{array}{ll}
270.8 & 126.4 \\
126.4 & 155.1
\end{array}\right)
$$

It is possible to add further constraints on this feasibility problem. For instance, you can bound the Frobenius norm of P by 10 while asking tmin to be less than or equal to -1 . This is done by

```
[tmin,xfeas] = feasp(lmis,[0,0,10,0,0],-1)
```

The third entry 10 of options sets the feasibility radius to 10 while the third argument -1 sets the target value for tmin. This yields tmin $=-1.1745$ and a matrix P with largest eigenvalue $\lambda_{\max }(P)=9.6912$.

References

The feasibility solver feasp is based on Nesterov and Nemirovski's Projective Method described in:

Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, p. 840-844.

The optimization is performed by the C-MEX file feaslv.mex.

See Also

mincx | gevp | dec2mat

fiffrd

Fit frequency response data with state-space model

Syntax

$B=\operatorname{fitfr}(A, N)$
$B=\operatorname{fitfr}(A, N, R D)$
$B=\operatorname{fitfrd}(A, N, R D, W T)$

Description

$B=f i t f r d(A, N)$ is a state-space object with state dimension N, where A is an $f r d$ object and N is a nonnegative integer. The frequency response of B closely matches the D scale frequency response data in A .

A must have either 1 row or 1 column, although it need not be 1-by- 1 . B will be the same size as A . In all cases, N should be a nonnegative scalar.
$B=$ fitfrd (A, $N, R D$) forces the relative degree of B to be RD. RD must be a nonnegative integer. The default value for RD is 0 . If A is a row (or column) then RD can be a vector of the same size as well, specifying the relative degree of each entry of B. If RD is a scalar, then it specifies the relative degree for all entries of B. You can specify the default value for RD by setting RD to an empty matrix.
$B=\operatorname{fitfrd}(A, N, R D, W T)$ uses the magnitude of $W T$ to weight the optimization fit criteria. WT can be a double, ss or frd. If WT is a scalar, then it is used to weight all entries of the error criteria ($A-B$). If WT is a vector, it must be the same size as A, and each individual entry of WT acts as a weighting function on the corresponding entry of (A$B)$.

Examples

Fit D-scale Data

Use the fitfrd command to fit D-scale data.

Create D-scale frequency response data from a fifth-order system.

```
sys = tf([1 2 2],[1 2.5 1.5])*tf(1,[1 0.1]);
sys = sys*tf([1 3.75 3.5],[1 2.5 13]);
omeg = logspace(-1,1);
sysg = frd(sys,omeg);
bode(sysg,'r-');
```


You can try to fit the frequency response D-scale data sysg with a first-order system, b1. Similarly, you can fit the D-scale data with a third-order system, b3.

```
b1 = fitfrd(sysg,1);
b3 = fitfrd(sysg,3);
```

Compare the original D-scale data sysg with the frequency responses of the first and third-order models calculated by fitfrd.

```
b1g = frd(b1,omeg);
b3g = frd(b3,omeg);
bode(sysg,'r-',b1g,'k:',b3g,'b-.')
legend('5th order system','1st order fit','3rd order fit','Location','Southwest')
```


Limitations

Numerical conditioning problems arise if the state order of the fit N is selected to be higher than required by the dynamics of A .

See Also fitmagfrd

fitmagfrd

Fit frequency response magnitude data with minimum-phase state-space model using log-Chebyshev magnitude design

Syntax

```
B = fitmagfrd(A,N)
B = fitmagfrd(A,N,RD)
B = fitmagfrd(A,N,RD,WT)
B = fitmagfrd(A,N,RD,WT,C)
```


Description

$B=$ fitmagfrd(A,N) is a stable, minimum-phase ss object, with state-dimension N, whose frequency response magnitude closely matches the magnitude data in A. A is a 1 -by- 1 frd object, and N is a nonnegative integer.
$B=$ fitmagfrd $(A, N, R D)$ forces the relative degree of B to be RD. RD must be a nonnegative integer whose default value is 0 . You can specify the default value for RD by setting RD to an empty matrix.
$B=f i t m a g f r d(A, N, R D, W T)$ uses the magnitude of WT to weight the optimization fit criteria. WT can be a double, ss or frd. If WT is a scalar, then it is used to weight all entries of the error criteria (A-B). If WT is a vector, it must be the same size as A, and each individual entry of WT acts as a weighting function on the corresponding entry of (AB). The default value for WT is 1 , and you can specify it by setting WT to an empty matrix.
$B=$ fitmagfrd $(A, N, R D, W T, C)$ enforces additional magnitude constraints on B, specified by the values of C. LowerBound and C. UpperBound. These can be empty, double or frd (with C.Frequency equal to A.Frequency). If C. LowerBound is nonempty, then the magnitude of B is constrained to lie above C. LowerBound. No lower bound is enforced at frequencies where C. LowerBound is equal to -inf. Similarly, the UpperBound field can be used to specify an upper bound on the magnitude of B . If C is a
double or frd (with C.Frequency equal to A.Frequency), then the upper and lower bound constraints on B are taken directly from A as:

- if $C(w)==-1$, then enforce $\operatorname{abs}(B(w))<=\operatorname{abs}(A(w))$
- if $C(w)==1$, then enforce $\operatorname{abs}(B(w))>=\operatorname{abs}(A(w))$
- if $C(w)==0$, then no additional constraint
where w denotes the frequency.

Examples

Fit Frequency Response Data With Stable Minimum-Phase State-Space Model

Create frequency response magnitude data from a fifth-order system.

```
sys = tf([ll 2 2],[11 2.5 1.5])*tf(1,[11 0.1]);
sys = sys*tf([11 3.75 3.5],[1 2.5 13]);
omega = logspace(-1,1);
sysg = abs(frd(sys,omega));
bodemag(sysg,'r');
```


Fit the magnitude data with a minimum-phase, stable third-order system.

```
ord = 3;
b1 = fitmagfrd(sysg,ord);
b1g = frd(b1,omega);
bodemag(sysg,'r',b1g,'k:');
legend('Data','3rd order fit');
```


Bode Diagram

Fit the magnitude data with a third-order system constrained to lie below and above the given data.

```
C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],[],C2);
b2g = frd(b2,omega);
C3.UpperBound = [];
C3.LowerBound = sysg;
b3 = fitmagfrd(sysg,ord,[],[],C3);
b3g = frd(b3,omega);
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--')
legend('Data','3rd order fit','3rd order fit, below data',...
    '3rd order fit, above data')
```

Bode Diagram

Fit the magnitude data with a second-order system constrained to lie below and above the given data.

```
ord = 2;
C2.UpperBound = sysg;
C2.LowerBound = [];
b2 = fitmagfrd(sysg,ord,[],sysg,C2);
b2g = frd(b2,omega);
C3.UpperBound = [];
C3.LowerBound = sysg;
b3 = fitmagfrd(sysg,ord,[],sysg,C3);
b3g = frd(b3,omega);
bgp = fitfrd(genphase(sysg),ord);
bgpg = frd(bgp,omega);
```

```
bodemag(sysg,'r',b1g,'k:',b2g,'b-.',b3g,'m--',bgpg,'r--')
legend('Data','3rd order fit','2d order fit, below data',...
    2nd order fit, above data','bgpg')
```


Bode Diagram

Limitations

This input frd object must be either a scalar 1-by-1 object or, a row, or column vector.

More About

Algorithms

fitmagfrd uses a version of log-Chebyshev magnitude design, solving

```
min f subject to (at every frequency point in A):
    |d|^2 /(1+ f/WT) < |n|^2/A^2 < |d|^^2*(1 + f/WT)
```

plus additional constraints imposed with C. n, d denote the numerator and denominator, respectively, and $B=n / d . n$ and d have orders ($N-R D$) and N, respectively. The problem is solved using linear programming for fixed f and bisection to minimize f. An alternate approximate method, which cannot enforce the constraints defined by C, is B $=$ fitfrd(genphase (A) , N, RD, WT).

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New Jersey, 1975, p. 513.

Boyd, S. and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.

See Also

fitfrd

gapmetric

Compute upper bounds on Vinnicombe gap and nugap distances between two systems

Syntax

```
[gap,nugap] = gapmetric(p0,p1)
[gap,nugap] = gapmetric(p0,p1,tol)
```


Description

[gap, nugap] = gapmetric(p0,p1) calculates upper bounds on the gap and nugap (Vinnicombe) metric between systems p 0 and p 1 . The gap and nugap values lie between 0 and 1 . A small value (relative to 1) implies that any controller that stabilizes p 0 will likely stabilize p1, and, moreover, that the closed-loop gains of the two closed-loop systems will be similar. A gap or nugap of 0 implies that $p 0$ equals $p 1$, and a value of 1 implies that the plants are far apart. The input and output dimensions of p0 and p1 must be the same.
[gap, nugap] = gapmetric(p0, p1,tol) specifies a relative accuracy for calculating the gap metric and nugap metric. The default value for tol is 0.001 . The computed answers are guaranteed to satisfy

```
gap-tol < gapexact(p0,p1) <= gap
```


Examples

Compute gap and nugap Metrics for Stable and Unstable Plant Models

Create two plant models. One plant is unstable, first-order, with transfer function $1 /(s$ $-0.001)$. The other plant is stable and first-order with transfer function $1 /(s+0.001)$.

```
p1 = tf(1,[1 -0.001]);
p2 = tf(1,[1 0.001]);
```

Despite the fact that one plant is unstable and the other is stable, these plants are close in the gap and nugap metrics.

```
[g,ng] = gapmetric(p1,p2)
```

$g=$
0.0029
$\mathrm{ng}=$
0.0020

Intuitively, this result is obvious, because, for instance, the feedback controller K = 1 stabilizes both plants and renders the closed-loop systems nearly identical.

```
K = 1;
H1 = loopsens(p1,K);
H2 = loopsens(p2,K);
subplot(2,2,1); bode(H1.Si,'-',H2.Si,'--');
subplot(2,2,2); bode(H1.Ti,'-',H2.Ti,'--');
subplot(2,2,3); bode(H1.PSi,'-',H2.PSi,'--');
subplot(2,2,4); bode(H1.CSo,'-',H2.CSo,'--');
```


Next, consider two stable plant models that differ by a first-order system. One plant is the transfer function $50 /(s+50)$ and the other plant is the transfer function $50 /(s+50)$ * $8 /(s+8)$.

```
p3 = tf([50],[1 50]);
p4 = tf([8],[1 8])*p3;
```

Although the two systems have similar high-frequency dynamics and the same unity gain at low frequency, the plants are modestly far apart in the gap and nugap metrics.
[g, ng] = gapmetric(p3, p4)
$\mathrm{g}=$

More About

Algorithms

gap and nugap compute the gap and vgap metrics between two LTI objects. Both quantities give a numerical value $\delta(\mathrm{p} 0, \mathrm{p} 1)$ between 0 and 1 for the distance between a nominal system p0 $\left(G_{0}\right)$ and a perturbed system p1 $\left(G_{1}\right)$. The gap metric was introduced into the control literature by Zames and El-Sakkary 1980, and exploited by Georgiou and Smith 1990. The v gap metric was derived by Vinnicombe 1993. For both of these metrics the following robust performance result holds from Qui and Davidson 1992, and Vinnicombe 1993

$$
\arcsin b\left(G_{1}, K_{1}\right) \geq \arcsin b\left(G_{0}, K_{0}\right)-\arcsin \delta\left(G_{0}, G_{1}\right)-\arcsin \delta\left(K_{0}, K_{1}\right)
$$

where

$$
b(G, K)=\left\|\left[\begin{array}{c}
I \\
K
\end{array}\right](I-G K)^{-1}\left[\begin{array}{ll}
G & I
\end{array}\right]\right\|_{\infty}^{-1}
$$

The interpretation of this result is that if a nominal plant G_{0} is stabilized by controller K_{0}, with "stability margin" $b\left(G_{0}, K_{0}\right)$, then the stability margin when G_{0} is perturbed to G_{1} and K_{0} is perturbed to K_{1} is degraded by no more than the above formula. Note that $1 / b(G, K)$ is also the signal gain from disturbances on the plant input and output to the input and output of the controller. The v gap is always less than or equal to the gap, so its predictions using the above robustness result are tighter.

To make use of the gap metrics in robust design, weighting functions need to be introduced. In the above robustness result, G needs to be replaced by $W_{2} G W_{1}$ and K by $W_{1}^{-1} K W_{2}^{-1}$ (similarly for G_{0}, G_{1}, K_{0} and K_{1}). This makes the weighting functions
compatible with the weighting structure in the H_{∞} loop shaping control design procedure (see loopsyn and ncfsyn for more details).

The computation of the gap amounts to solving 2 -block H_{∞} problems (Georgiou, Smith 1988). The particular method used here for solving the H_{∞} problems is based on Green et al., 1990. The computation of the nugap uses the method of Vinnicombe, 1993.

References

Georgiou, T.T., "On the computation of the gap metric, " Systems Control Letters, Vol. 11, 1988, p. 253-257

Georgiou, T.T., and M. Smith, "Optimal robustness in the gap metric," IEEE Transactions on Automatic Control, Vol. 35, 1990, p. 673-686

Green, M., K. Glover, D. Limebeer, and J.C. Doyle, "A J-spectral factorization approach to H_{∞} control," SIAM J. of Control and Opt., 28(6), 1990, p. 1350-1371

Qiu, L., and E.J. Davison, "Feedback stability under simultaneous gap metric uncertainties in plant and controller," Systems Control Letters, Vol. 18-1, 1992 p. 9-22

Vinnicombe, G., "Measuring Robustness of Feedback Systems," PhD Dissertation, Department of Engineering, University of Cambridge, 1993.

Zames, G., and El-Sakkary, "Unstable systems and feedback: The gap metric," Proceedings of the Allerton Conference, October 1980, p. 380-385

See Also
loopsyn | wcsens | ncfsyn | robuststab | wcmargin

genphase

Fit single-input/single-output magnitude data with real, rational, minimum-phase transfer function

Syntax

```
resp = genphase(d)
```


Description

genphase uses the complex-cepstrum algorithm to generate a complex frequency response resp whose magnitude is equal to the real, positive response d, but whose phase corresponds to a stable, minimum-phase function. The input, d, and output, resp, are frd objects.

References

Oppenheim, A.V., and R.W. Schaffer, Digital Signal Processing, Prentice Hall, New Jersey, 1975, p. 513.

See Also

fitfrd | fitmagfrd

getlmis

Internal description of LMI system

Syntax

lmisys $=$ getlmis

Description

After completing the description of a given LMI system with lmivar and lmiterm, its internal representation lmisys is obtained with the command

```
lmisys = getlmis
```

This MATLAB representation of the LMI system can be forwarded to the LMI solvers or any other LMI-Lab function for subsequent processing.

See Also
setlmis | newlmi | lmivar | lmiterm

getNominal

Nominal value of uncertain model

Syntax

Mnom = getNominal(M)

Description

Mnom = getNominal (M) replaces all uncertain elements in M with their nominal values. All other control design blocks in M are unchanged.

Examples

Nominal Value of Uncertain Models

Create a model of a mass-spring-damper system in which the mass, spring constant, and damping constant are all uncertain.

```
m = ureal('m',3,'percent',40);
k = ureal('k',2,'percent',30);
c = ureal('c',1,'percent',20);
G = tf(1,[m,c,k])
G =
```

```
Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
```

Uncertain continuous-time state-space model with 1 outputs, 1 inputs, 2 states.
The model uncertainty consists of the following blocks:
The model uncertainty consists of the following blocks:
c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
c: Uncertain real, nominal = 1, variability = [-20,20]%, 1 occurrences
k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
k: Uncertain real, nominal = 2, variability = [-30,30]%, 1 occurrences
m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences
m: Uncertain real, nominal = 3, variability = [-40,40]%, 1 occurrences
Type "G.NominalValue" to see the nominal value, "get(G)" to see all properties, and

```

G is a uss model. Extract its nominal value.
```

Gnom = getNominal(G);

```

Because \(G\) has only uncertain control design blocks, Gnom is a numeric state-space (ss) model.

Combine G with a tunable PID controller.
```

C = tunablePID('C','pid');
T = feedback(G*C,1)
T =

```
    Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, an
    C: Parametric PID controller, 1 occurrences.
    c: Uncertain real, nominal \(=1\), variability \(=[-20,20] \%\), 1 occurrences
    k: Uncertain real, nominal \(=2\), variability \(=[-30,30] \%\), 1 occurrences
    m : Uncertain real, nominal \(=3\), variability \(=[-40,40] \%\), 1 occurrences
Type "ss(T)" to see the current value, "get(T)" to see all properties, and "T.Blocks"

T is a generalized state-space (genss) model that has both tunable and uncertain blocks. Extract the nominal value of T.
```

Tnom = getNominal(T)

```
```

Tnom =

```
    Generalized continuous-time state-space model with 1 outputs, 1 inputs, 3 states, anc
    \(C\) : Parametric PID controller, 1 occurrences.
Type "ss(Tnom)" to see the current value, "get(Tnom)" to see all properties, and "Tnom

Extracting the nominal value of T preserves the tunable control design block, resulting in another genss model.

\section*{Input Arguments}

\section*{M - Uncertain model or matrix}
dynamic system model | static model

Uncertain model or matrix, specified as a dynamic system model or static model. Typically, M is a model that contains uncertainty, such as a uss, uncertain genss, or umat model.

\section*{Output Arguments}

\section*{Mnom - Nominal model or matrix}
dynamic system model | static model
Nominal value of \(M\), returned as a dynamic system model or static model. Mnom has no uncertain blocks.

The model type of Mnom depends on the type of \(M\). For example, if \(M\) is a genss model with uncertain blocks and tunable blocks, then Mnom is a genss model with tunable blocks.

If \(M\) contains no control design blocks other than uncertain blocks, then Mnom is a statespace (ss) model, an frd model, or a numeric array, depending on the type of M. For example, if \(M\) is a uss model, then Mnom is a ss model. If \(M\) is a umat, then Mnom is a numeric array.

If \(M\) has no uncertain blocks, then \(M n o m=M\).

\author{
See Also \\ genss | umat | uss \\ Introduced in R2015b
}

\section*{gevp}

Generalized eigenvalue minimization under LMI constraints

\section*{Syntax}
[lopt, xopt] = gevp(lmisys, nlfc,options, linit, xinit,target)

\section*{Description}
gevp solves the generalized eigenvalue minimization problem of minimizing \(\lambda\), subject to:
\[
\begin{aligned}
& C(x)<D(x) \\
& 0<B(x) \\
& A(x)<\lambda B(x)
\end{aligned}
\]
where \(C(x)<D(x)\) and \(A(x)<\lambda B(x)\) denote systems of LMIs. Provided that Equation 1-7 and Equation 1-8 are jointly feasible, gevp returns the global minimum lopt and the minimizing value xopt of the vector of decision variables \(x\). The corresponding optimal values of the matrix variables are obtained with dec2mat.

The argument lmisys describes the system of LMIs Equation 1-7 to Equation 1-9 for \(\lambda=1\). The LMIs involving \(\lambda\) are called the linear-fractional constraints while Equation 1-7 and Equation 1-8 are regular LMI constraints. The number of linearfractional constraints Equation 1-9 is specified by nlfc. All other input arguments are optional. If an initial feasible pair ( \(\Lambda_{0}, x_{0}\) ) is available, it can be passed to gevp by setting linit to \(\lambda_{0}\) and xinit to \(x_{0}\). Note that xinit should be of length decnbr (lmisys) (the number of decision variables). The initial point is ignored when infeasible. Finally, the last argument target sets some target value for \(\lambda\). The code terminates as soon as it has found a feasible pair ( \(\lambda, x\) ) with \(\lambda \leq\) target.

\section*{Caution}

When setting up your gevp problem, be cautious to
- Always specify the linear-fractional constraints Equation 1-9 last in the LMI system. gevp systematically assumes that the last nlfc LMI constraints are linear fractional.
- Add the constraint \(B(x)>0\) or any other LMI constraint that enforces it (see Remark below). This positivity constraint is required for regularity and good formulation of the optimization problem.

\section*{Control Parameters}

The optional argument options lets you access control parameters of the optimization code. In gevp, this is a five-entry vector organized as follows:
- options(1) sets the desired relative accuracy on the optimal value lopt (default = \(10^{-2}\) ).
- options(2) sets the maximum number of iterations allowed to be performed by the optimization procedure ( 100 by default).
- options (3) sets the feasibility radius. Its purpose and usage are the same as for feasp.
- options (4) helps speed up termination. If set to an integer value \(J>0\), the code terminates when the progress in \(\lambda\) over the last \(J\) iterations falls below the desired relative accuracy. Progress means the amount by which \(\lambda\) decreases. The default value is 5 iterations.
- options \((5)=1\) turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value.

\section*{Examples}

Given
\[
A 1=\left(\begin{array}{cc}
-1 & 2 \\
1 & -3
\end{array}\right), A 2=\left(\begin{array}{cc}
-0.8 & 1.5 \\
1.3 & -2.7
\end{array}\right), A 3=\left(\begin{array}{cc}
-1.4 & 0.9 \\
0.7 & -2.0
\end{array}\right)
\]
consider the problem of finding a single Lyapunov function \(V(x)=x^{T} P x\) that proves stability of
\[
\dot{x}=A_{i} x(i=1,2,3)
\]
and maximizes the decay rate \(\frac{d V(x)}{d t}\). This is equivalent to minimizing a subject to
\[
\begin{aligned}
& I<P \\
& A_{1}^{T} P+P A_{1}<\alpha P \\
& A_{2}^{T} P+P A_{2}<\alpha P \\
& A_{3}^{T} P+P A_{3}<\alpha P
\end{aligned}
\]

To set up this problem for gevp, first specify the LMIs Equation 1-11 to Equation 1-13with \(\alpha=1\) :
```

setlmis([]);
p = lmivar(1,[2 1])
lmiterm([1 1 1 1 0 0],1) % P > I : I
lmiterm([[-1 1.1 1 p],1,1) % P > I : P
lmiterm([2 1 1 p],1,a1,'s') % LFC \# 1 (lhs)
lmiterm([-2 1 1 1 p],1,1) % LFC \# 1 (rhs)
lmiterm([[3 1 1 1 p],1,a2,'s') % LFC \# 2 (lhs)
lmiterm([-3 [1 1 1 p],1,1) % LFC \# 2 (rhs)
lmiterm([4 4 1 1 1 p],1,a3,'s') % LFC \# 3 (lhs)
lmiterm([-4 1 1 p],1,1) % LFC \# 3 (rhs)
lmis = getlmis

```

Note that the linear fractional constraints are defined last as required. To minimize \(\alpha\) subject to Equation 1-11 to Equation 1-13, call gevp by
```

[alpha,popt]=gevp(lmis,3)

```

This returns alpha \(=-0.122\) as the optimal value (the largest decay rate is therefore 0.122 ). This value is achieved for:
\[
P=\left(\begin{array}{cc}
5.58 & -8.35 \\
-8.35 & 18.64
\end{array}\right)
\]

\section*{More About}

\section*{Tips}

Generalized eigenvalue minimization problems involve standard LMI constraints Equation 1-7 and linear fractional constraints Equation 1-9. For well-posedness, the positive definiteness of \(B(x)\) must be enforced by adding the constraint \(B(x)>0\) to the problem. Although this could be done automatically from inside the code, this is not desirable for efficiency reasons. For instance, the set of constraints Equation 1-8 may reduce to a single constraint as in the example above. In this case, the single extra LMI " \(P>I\) " is enough to enforce positivity of all linear-fractional right sides. It is therefore left to the user to devise the least costly way of enforcing this positivity requirement.

\section*{References}

The solver gevp is based on Nesterov and Nemirovski's Projective Method described in
Nesterov, Y., and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

The optimization is performed by the C MEX-file fpds.mex.
```

See Also
dec2mat | decnbr | feasp | mincx

```

\section*{gridureal}

Grid ureal parameters uniformly over their range

\section*{Syntax}
```

B = gridureal(A,N)
[B,SampleValues] = gridureal(A,N)
[B,SampleValues] = gridureal(A,NAMES,N)
[B,SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2, ...)

```

\section*{Description}
\(B=\) gridureal \((A, N)\) substitutes \(N\) uniformly-spaced samples of the uncertain real parameters in A. The samples are chosen to cut "diagonally" across the cube of real parameter uncertainty space. The array B has size equal to [size (A) N]. For example, suppose \(A\) has 3 uncertain real parameters, say \(X, Y\) and \(Z\). Let ( \(x 1\), \(x 2\), , and \(x N\) ) denote \(N\) uniform samples of \(X\) across its range. Similar for \(Y\) and \(Z\). Then sample \(A\) at the points ( \(\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1\) ), ( \(\mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2\) ), and ( \(\mathrm{xN}, \mathrm{yN}, \mathrm{zN}\) ) to obtain the result B .

If \(A\) depends on additional uncertain objects, then \(B\) will be an uncertain object.
[B,SampleValues] = gridureal(A,N) additionally returns the specific sampled values (as a structure whose fieldnames are the names of A's uncertain elements) of the uncertain reals. Hence, \(B\) is the same as usubs ( \(A\), SampleValues).
[B,SampleValues] = gridureal(A,NAMES,N) samples only the uncertain reals listed in the NAMES variable (cell, or char array). Any entries of NAMES that are not elements of \(A\) are simply ignored. Note that gridureal ( \(A\), fieldnames (A.Uncertainty), \(N\) ) is the same as gridureal( \(A, N\) ).
[B, SampleValues] = gridureal(A,NAMES1,N1,NAMES2,N2, . . ) takes N1 samples of the uncertain real parameters listed in NAMES1, and N2 samples of the uncertain real parameters listed in NAMES2 and so on. size (B) will equal [size(A) N1 N2 ...].

\section*{Examples}

\section*{Grid Open-Loop and Closed-Loop Responses of Uncertain System}

Create two uncertain real parameters gamma and tau. The nominal value of gamma is 4 and its range is 3 to 5 . The nominal value of tau is 0.5 and its value can vary by \(+/-30\) percent.
```

gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);

```

These uncertain parameters are used to construct an uncertain transfer function \(p\). An integral controller, \(c\), is synthesized for the plant \(p\) based on the nominal values of gamma and tau. The uncertain closed-loop system clp is formed.
```

p = tf(gamma,[tau 1]);
KI = 1/(2*tau.Nominal*gamma.Nominal);
c = tf(KI,[1 0]);
clp = feedback(p*c,1);

```

The figure below shows the open-loop unit step response (top plot) and closed-loop response (bottom plot) for a grid of 20 values of gamma and tau.
```

subplot(2,1,1); step(gridureal(p,20),6)
title('Open-loop plant step responses')
subplot(2,1,2); step(gridureal(clp,20),6)

```


The plot illustrates the low-frequency closed-loop insensitivity achieved by the PI control system.

\section*{Grid Over Multi-Dimensional Parameter Spaces}

This example illustrates the different options in gridding high-dimensional (e.g., n greater than 2) parameter spaces.

Construct an uncertain matrix, \(m\), from four uncertain real parameters, \(a, b, c\), and \(d\), each making up the individual entries in \(m\).
a = ureal('a',1);
b = ureal('b',2);
\(c=u r e a l\left({ }^{\prime} c^{\prime}, 3\right) ;\)
\(d=\) ureal('d',4);
\(m=[a b ; c d] ;\)
First, grid the ( \(\mathrm{a}, \mathrm{b}\) ) space at five places, and the \((\mathrm{c}, \mathrm{d})\) space at three places.
m1 = gridureal(m,\{'a';'b'\},5,\{'c';'d'\},3);
gridureal evaluates the uncertain matrix \(m\) at these 15 grid points, resulting in the numerical matrix m1.

Next, grid the ( \(a, b, c, d\) ) space at 15 places.
m2 = gridureal(m, \{'a';'b';'c';'d'\},15);
gridureal samples the uncertain matrix \(m\) at these 15 points, resulting in the numerical matrix m2.

The \((2,1)\) entry of \(m\) is just the uncertain real parameter \(c\). Plot the histograms of the \((2,1)\) entry of both m 1 and m 2 . The \((2,1)\) entry of m 1 only takes on three distinct values, while the \((2,1)\) entry of m 2 takes on 15 distinct values uniformly through its range.
```

subplot(2,1,1)
hist(squeeze(m1(2,1,:)))
title('2,1 entry of m1')
subplot(2,1,2)
hist(squeeze(m2(2,1,:)))
title('2,1 entry of m2')

```


\section*{See Also}
usample | usubs

\section*{h2hinfsyn}

Mixed \(H_{2} / H_{\infty}\) synthesis with pole placement constraints

\section*{Syntax}
```

[gopt,h2opt,K,R,S] = hinfmix(P,r,obj,region,dkbnd,tol)

```

\section*{Description}
h2hinfyn performs multi-objective output-feedback synthesis. The control problem is sketched in this figure.


If \(T_{\infty}(s)\) and \(T_{2}(s)\) denote the closed-loop transfer functions from \(w\) to \(z_{\infty}\) and \(z_{2}\), respectively, hinfmix computes a suboptimal solution of the following synthesis problem:

Design an LTI controller \(K(s)\) that minimizes the mixed \(H_{2} / H_{\infty}\) criterion
\[
\alpha\left\|T_{\infty}\right\|_{\infty}^{2}+\beta\left\|T_{2}\right\|_{2}^{2}
\]
subject to
- \(\left\|T_{o \infty}\right\|_{[\text {[BULLET }]]}<\gamma_{0}\)
- \(\left\|T_{2}\right\|_{2}<\mathrm{v}_{0}\)
- The closed-loop poles lie in some prescribed LMI region D.

Recall that \(\|.\| \infty\) and \(\|.\|_{2}\) denote the \(H_{\infty}\) norm (RMS gain) and \(H_{2}\) norm of transfer functions.
\(P\) is any SS, TF, or ZPK LTI representation of the plant \(P(s)\), and \(r\) is a three-entry vector listing the lengths of \(z_{2}, y\), and \(u\). Note that \(z_{\infty}\) and/or \(z_{2}\) can be empty. The four-entry vector obj \(=\left[\gamma_{0}, \mathrm{v}_{0}, \mathrm{a}, \mathrm{B}\right]\) specifies the \(H_{2} / H_{\infty}\) constraints and trade-off criterion, and the remaining input arguments are optional:
- region specifies the LMI region for pole placement (the default region = [] is the open left-half plane). Use lmireg to interactively build the LMI region description region
- dkbnd is a user-specified bound on the norm of the controller feedthrough matrix \(D_{K}\). The default value is 100 . To make the controller \(K(s)\) strictly proper, set dkbnd \(=0\).
- tol is the required relative accuracy on the optimal value of the trade-off criterion (the default is \(10^{-2}\) ).

The function h2hinfsyn returns guaranteed \(H_{\infty}\) and \(H_{2}\) performances gopt and h2opt as well as the SYSTEM matrix K of the LMI-optimal controller. You can also access the optimal values of the LMI variables \(R, S\) via the extra output arguments R and S .

A variety of mixed and unmixed problems can be solved with hinfmix. In particular, you can use hinfmix to perform pure pole placement by setting obj \(=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]\). Note that both \(z_{\infty}\) and \(z_{2}\) can be empty in such case.

\section*{References}

Chilali, M., and P. Gahinet, " \(H_{\infty}\) Design with Pole Placement Constraints: An LMI Approach," IEEE Trans. Aut. Contr., 41 (1995), pp. 358-367.

Scherer, C., "Mixed H2/H-infinity Control," Trends in Control: A European Perspective, Springer-Verlag (1995), pp.173-216.

\section*{See Also}
lmireg | msfsyn

\section*{h2syn}
\(H_{2}\) control synthesis for LTI plant

\section*{Syntax}
[K, CL, GAM, INFO] = H2SYN(P,NMEAS,NCON \()\)

\section*{Description}
[K, CL , GAM , INFO] = H2SYN (P, NMEAS, NCON ) computes a stabilizing \(H_{2}\) optimal controller K for a partitioned LTI plant P:
\(P=\left[\begin{array}{c|cc}A & B_{1} & B_{2} \\ \hline C_{1} & D_{11} & D_{12} \\ C_{2} & D_{21} & D_{22}\end{array}\right]\).

The LTI system P is partitioned where inputs to \(B_{1}\) are the disturbances, inputs to \(B_{2}\) are the control inputs, output of \(C_{1}\) are the errors to be kept small, and outputs of \(C_{2}\) are the output measurements provided to the controller. \(B_{2}\) has column size (NCON) and \(C_{2}\) has row size (NMEAS). The controller, K, is a state-space (ss) model and has the same number of states as \(P\).

If \(P\) is constructed with mktito, you can omit NMEAS and NCON from the arguments.
The closed-loop system is returned in CL and the achieved \(H_{2}\) cost \(\gamma\) in GAM. INFO is a struct array that returns additional information about the design.

\(H_{2}\) control system CL= lft \((P, K)=\).
\begin{tabular}{|l|l|}
\hline Output Arguments & Description \\
\hline K & LTI controller \\
\hline \(\mathrm{CL}=\) lft \((\mathrm{P}, \mathrm{K})\) & LTI closed-loop system \(T y_{1} u_{1}\) \\
\hline \begin{tabular}{l} 
GAM \(=\) \\
norm \((\mathrm{CL})\)
\end{tabular} & \(H_{2}\) optimal cost \(\gamma=\left\|T_{y_{1} u_{1}}\right\|^{2}\) \\
\hline INFO & Additional output information \\
\hline
\end{tabular}

Additional output - structure array INFO containing possible additional information depending on METHOD)
\begin{tabular}{|l|l|}
\hline INFO. NORMS & \begin{tabular}{l} 
Norms of four different quantities, full information control cost (FI), \\
output estimation cost (OEF), direct feedback cost (DFL) and full \\
control cost (FC). NORMS = [FI OEF DFL FC];
\end{tabular} \\
\hline INFO. KFI & \begin{tabular}{l} 
Full-information gain matrix (constant feedback) \\
\(\quad u_{2}(t)=K_{F I} x(t)\)
\end{tabular} \\
\hline INFO.GFI & \begin{tabular}{l} 
Full-information closed-loop system GFI =ss (A-B2*KFI , B1 , C1 - \\
D12*KFI ,D11)
\end{tabular} \\
\hline INFO.HAMX & X Hamiltonian matrix (state-feedback) \\
\hline INFO.HAMY & Y Hamiltonian matrix (Kalman filter) \\
\hline
\end{tabular}

\section*{Examples}

\section*{Stabilizing Controller for MIMO Plant}

Stabilize a 4-by-5 unstable plant with three states, two measurement signals, and one control signal.

In practice, P is an augmented plant that you have constructed by combining a model of the system to control with appropriate H 2 weighting functions. For this example, use a randomly-generated model.
```

rng(0,'twister');
P = rss(3,4,5)';

```

This command creates a 4 -output, 5 -input stable model and then takes its Hermitian conjugate. This operation yields a 5 -output, 4 -input unstable model. For this example, assume that one of the inputs is a control signal and two of the outputs are measurements.

Confirm that P is unstable. All the poles are in the right half-plane.
```

pole(P)

```
ans =
0.2593
15.9497
20.7994

Design the stabilizing controller, assuming NMEAS \(=2\) and NCON \(=1\).
[ \(K, C L, G A M]=h 2 \operatorname{syn}(P, 2,1)\);
Examine the closed-loop system to confirm that the plant is stabilized.
pole(CL)
ans \(=\)
-26.8951
-22.4817
\(-20.6965\)

\section*{Mixed-Sensitivity H2 Loop Shaping}

Shape the singular value plots of the sensitivity \(S=(I+G K)^{-1}\) and complementary sensitivity \(T=G K(I+G K)^{-1}\).

To do so, find a stabilizing controller \(K\) that minimizes the \(H_{2}\) norm of:
\[
T_{y_{1} u_{1}} \triangleq\left[\begin{array}{c}
W_{1} S \\
\left(W_{2} / G\right) T \\
W_{3} T
\end{array}\right]
\]

Assume the following plant and weights:
\[
G(s)=\frac{s-1}{s-2}, W_{1}=\frac{0.1(s+1000)}{100 s+1}, W_{2}=0.1, W_{3}=0 .
\]

Using those values, construct the augmented plant \(P\), as illustrated in the mixsyn reference page.
```

s = zpk('s');
G = 10*(s-1)/(s+1)^2;
G.u = 'u2';
G.y = 'y';
W1 = 0.1*(s+1000)/(100*s+1);
W1.u = 'y2';
w1.y = 'y11';
W2 = tf(0.1);
W2.u = 'u2';
W2.y = 'y12';
S = sumblk('y2 = u1 - y');
P = connect(G,S,W1,W2,{'u1','u2'},{'y11','y12','y2'});

```

Use h2syn to generate the controller. Note that this system has NMEAS \(=1\) and NCON \(=1\).
\([K, C L, G A M]=h 2 \operatorname{syn}(P, 1,1)\);
Examine the resulting loop shape.
\(\mathrm{L}=\mathrm{G} * \mathrm{~K}\);
\(S=i n v(1+L) ;\)
\(\mathrm{T}=1-\mathrm{S}\);
sigmaplot(L, 'k-.' , S, 'r', T, 'g')
legend('open-loop', 'sensitivity', 'closed-loop')

Singular Values


\section*{Limitations}
- \(\left(A, B_{2}, C_{2}\right)\) must be stabilizable and detectable.
- \(D_{12}\) must have full column rank and \(D_{21}\) must have full row rank

\section*{More About}

\section*{Algorithms}

The \(H_{2}\) optimal control theory has its roots in the frequency domain interpretation the cost function associated with time-domain state-space LQG control theory [1]. The equations and corresponding nomenclature used here are taken from the Doyle et al., 1989 [2]-[3].
h2syn solves the \(H_{2}\) optimal control problem by observing that it is equivalent to a conventional Linear-Quadratic Gaussian (LQG) optimal control problem. For simplicity, we shall describe the details of algorithm only for the continuous-time case, in which case the cost function \(J_{L Q G}\) satisfies
\[
\begin{aligned}
J_{L Q G} & =\lim _{T \rightarrow \infty} E\left\{\frac{1}{T} \int_{0}^{T} y_{1}^{T} y_{1} d t\right\} \\
& =\lim _{T \rightarrow \infty} E\left\{\frac{1}{T} \int_{0}^{T}\left[x^{T} u_{2}^{T}\right]\left[\begin{array}{cc}
Q & N_{c} \\
N_{c}^{T} & R
\end{array}\right]\left[\begin{array}{c}
x \\
u_{2}
\end{array}\right] d t\right\} \\
& \left.=\lim _{T \rightarrow \infty} E\left\{\frac{1}{T} \int_{0}^{T}\left[x^{T} u_{2}^{T}\right]\left[\begin{array}{c}
C_{1}^{T} \\
D_{12}^{T}
\end{array}\right]\left[\begin{array}{cc}
C_{1} & \left.D_{12}\right]
\end{array}\right] \begin{array}{c}
x \\
u_{2}
\end{array}\right] d t\right\}
\end{aligned}
\]
with plant noise \(u_{1}\) channel of intensity I, passing through the matrix [B1;0;D12] to produce equivalent white correlated with plant \(\xi\) and white measurement noise \(\theta\) having joint correlation function
\[
\begin{aligned}
E\left\{\left[\begin{array}{l}
\xi(t) \\
\theta(t)
\end{array}\right]\left[\begin{array}{ll}
\xi(\tau) & \theta(\tau)
\end{array}\right]^{T}\right\} & =\left[\begin{array}{cc}
\Xi & N_{f} \\
N_{f}^{T} & \Theta
\end{array}\right] \delta(t-\tau) \\
& =\left[\begin{array}{c}
B_{1} \\
D_{21}
\end{array}\right]\left[\begin{array}{ll}
B_{1}^{T} & D_{21}^{T}
\end{array}\right] \delta(t-\tau)
\end{aligned}
\]

The \(H_{2}\) optimal controller \(K(s)\) is thus realizable in the usual LQG manner as a full-state feedback \(K_{F I}\) and a Kalman filter with residual gain matrix \(K_{F C}\).

\section*{1 Kalman Filter}
\[
\begin{aligned}
& \dot{\hat{x}}=A \hat{x}+B_{2} u_{2}+K_{F C}\left(y_{2}-C_{2 \hat{x}}-D_{22} u_{2}\right) \\
& K_{F C}=\left(Y C_{2}^{T}+N_{f}\right) \Theta^{-1}=\left(Y C_{2}^{T}+B_{1} D_{21}^{T}\right)\left(D_{21} D_{21}^{T}\right)^{-1}
\end{aligned}
\]
where \(Y=Y^{T} \geq 0\) solves the Kalman filter Riccati equation
\[
Y A^{T}+A Y-\left(Y C_{2}^{T}+N_{f}\right) \Theta^{-1}\left(C_{2} Y+N_{f}^{T}\right)+\Xi=0
\]

\section*{2 Full-State Feedback}
\[
\begin{aligned}
& u_{2}=K_{F I} \hat{x} \\
& \left.K_{F I}=R^{-1}\left(B_{2}^{T} X+N_{c}^{T}\right)=D_{12}^{T} D_{12}\right)^{-1}\left(B_{2}^{T} X+D_{12}^{T} C_{1}\right)
\end{aligned}
\]
where \(X=X^{T} \geq 0\) solves the state-feedback Riccati equation
\[
A^{T} X+X A-\left(X B_{2}+N_{c}\right) R^{-1}\left(B_{2}^{T} X+N_{c}^{T}\right)+Q=0
\]

The final positive-feedback \(H_{2}\) optimal controller \(u_{2}=K(s) y_{2}\) has a familiar closedform
\[
K(s):=\left[\begin{array}{c|c}
A-K_{F C} C_{2}-B_{2} K_{F I}+K_{F C} D_{22} K_{F I} & K_{f} \\
-K_{F I} & 0
\end{array}\right]
\]
h2syn implements the continuous optimal \(H_{2}\) control design computations using the formulae described in the Doyle, et al. [2]; for discrete-time plants, h2syn uses the same controller formula, except that the corresponding discrete time Riccati solutions (dare) are substituted for \(X\) and \(Y\). A Hamiltonian is formed and solved via a Riccati equation. In the continuous-time case, the optimal \(H_{2}\)-norm is infinite when the plant \(D_{11}\) matrix associated with the input disturbances and output errors is non-zero; in this case, the optimal \(H_{2}\) controller returned by h2syn is computed by first setting D11 to zero.
3 Optimal Cost GAM

The full information (FI) cost is given by the equation (trace \(\left.\left(B_{1}^{\prime} X_{2} B_{1}\right)\right)^{\frac{1}{2}}\). The output estimation cost (OEF) is given by \(\left(\operatorname{trace}\left(F_{2} Y_{2} F_{2}^{\prime}\right)\right)^{\frac{1}{2}}\), where \(F 2=:-\left(B_{2}^{\prime} X_{2}+D_{12}^{\prime} C_{1}\right)\). The disturbance feedforward cost (DFL) is \(\left(\text { trace }\left(L_{2}^{\prime} X_{2} L_{2}\right)\right)^{\frac{1}{2}}\), where \(L_{2}\) is defined by \(-\left(Y_{2} C_{2}^{\prime}+B_{1} D_{21}^{\prime}\right)\) and the full control cost (FC) is given by \(\left(\text { trace }\left(C_{1} Y_{2} C_{1}^{\prime}\right)\right)^{\frac{1}{2}}\). \(X_{2}\) and \(Y_{2}\) are the solutions to the \(X\) and \(Y\) Riccati equations, respectively. For for continuous-time plants with zero feedthrough term (D11 = 0), and for all discretetime plants, the optimal \(H_{2} \operatorname{cost} \gamma=\left\|T_{y_{1} u_{1}}\right\|_{2}\) is

GAM \(=\operatorname{sqrt}\left(\right.\) FI^2 \(\left.^{\wedge}+0 E F^{\wedge} 2+\operatorname{trace}\left(D 11 * D 11^{\prime}\right)\right)\);
otherwise, GAM = Inf.

\section*{References}
[1] Safonov, M.G., A.J. Laub, and G. Hartmann, "Feedback Properties of Multivariable Systems: The Role and Use of Return Difference Matrix," IEEE Trans. of Automat. Contr., AC-26, pp. 47-65, 1981.
[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, "State-space solutions to standard \(\mathrm{H}_{2}\) and \(\mathrm{H}_{\infty}\) control problems," IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 831-847, August 1989.
[3] Glover, K., and J.C. Doyle, "State-space formulae for all stabilizing controllers that satisfy an \(\mathrm{H}_{\infty}\) norm bound and relations to risk sensitivity," Systems and Control Letters, 1988. vol. 11, pp. 167-172, August 1989.

\author{
See Also \\ augw | hinfsyn
}

\section*{hankelmr}

Hankel minimum degree approximation (MDA) without balancing

\section*{Syntax}
```

GRED = hankelmr(G)
GRED = hankelmr(G,order)
[GRED,redinfo] = hankelmr(G,key1,value1,...)
[GRED,redinfo] = hankelmr(G,order,key1,value1,...)

```

\section*{Description}
hankelmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system Hankel singular values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's, or.

With only one input argument \(G\), the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error \|GGRED \(\| \infty\) for well-conditioned model reduced problems [1]:
\[
\|G-G r e d\|_{\infty} \leq 2 \sum_{k+1}^{n} \sigma_{i}
\]

Note It seems this method is similar to the additive model reduction routines balancmr and schurmr, but actually it can produce more reliable reduced order model when the desired reduced model has nearly controllable and/or observable states (has Hankel
singular values close to machine accuracy). hankelmr will then select an optimal reduced system to satisfy the error bound criterion regardless the order one might naively select at the beginning.

This table describes input arguments for hankelmr.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline G & \begin{tabular}{l} 
LTI model to be reduced (without any other inputs will plot its Hankel \\
singular values and prompt for reduced order)
\end{tabular} \\
\hline ORDER & \begin{tabular}{l} 
(Optional) an integer for the desired order of the reduced model, or \\
optionally a vector packed with desired orders for batch runs
\end{tabular} \\
\hline
\end{tabular}

A batch run of a serial of different reduced order models can be generated by specifying order \(=x: y\), or a vector of integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for 'ORDER'. In this case, reduced order will be determined when the sum of the tails of the Hankel sv's reaches the 'MaxError'.
\begin{tabular}{|l|l|l|}
\hline Argument & Value & Description \\
\hline 'MaxError' & \begin{tabular}{l} 
Real number or vector of different \\
errors
\end{tabular} & \begin{tabular}{l} 
Reduce to achieve \(H_{\infty}\) error. \\
When present, \\
'MaxError ' overides ORDER \\
input.
\end{tabular} \\
\hline 'Weights' & \{Wout , Win\} cell array & \begin{tabular}{l} 
Optimal 1x2 cell array of LTI \\
weights Wout (output) and \\
Win (input). Default for both \\
is identity. Weights must be \\
invertible.
\end{tabular} \\
\hline 'Display' & 'on' or 'off' & \begin{tabular}{l} 
Display Hankel singular plots \\
(default ' off ').
\end{tabular} \\
\hline 'Order' & Integer, vector or cell array & \begin{tabular}{l} 
Order of reduced model. Use only \\
if not specified as 2nd argument.
\end{tabular} \\
\hline
\end{tabular}

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.
\begin{tabular}{|c|c|}
\hline Argument & Description \\
\hline GRED & LTI reduced order model. Become multi-dimensional array when input is a serial of different model order array. \\
\hline REDINFO & \begin{tabular}{l}
A STRUCT array with 4 fields: \\
- REDINFO. ErrorBound (bound on \(\|G-G R E D\| \infty\) ) \\
- REDINFO.StabSV (Hankel SV of stable part of G) \\
- REDINFO.UnstabSV (Hankel SV of unstable part of G) \\
- REDINFO.Ganticausal (Anti-causal part of Hankel MDA)
\end{tabular} \\
\hline
\end{tabular}

G can be stable or unstable, continuous or discrete.

Note If size(GRED) is not equal to the order you specified. The optimal Hankel MDA algorithm has selected the best Minimum Degree Approximate it can find within the allowable machine accuracy.

\section*{Examples}

Given a continuous or discrete, stable or unstable system, G , the following commands can get a set of reduced order models based on your selections:
```

rng(1234,'twister');
G = rss(30,5,4);
[g1, redinfo1] = hankelmr(G); % display Hankel SV plot
% and prompt for order (try 15:20)
[g2, redinfo2] = hankelmr(G,20);
[g3, redinfo3] = hankelmr(G,[10:2:18]);
[g4, redinfo4] = hankelmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

```

Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs) shows a singular value Bode plot of a random system \(G\) with 20 states, 5 output and 4 inputs. The error system between \(G\) and its Zeroth order Hankel MDA has it infinity norm equals to an all pass function, as shown in All-Pass Error System Between G and Zeroth Order G Anticausal.

The Zeroth order Hankel MDA and its error system sigma plot are obtained via commands
```

[g0,redinfo0] = hankelmr(G,0);
sigma(G-redinfo0.Ganticausal)

```

This interesting all-pass property is unique in Hankel MDA model reduction.


Singular Value Bode Plot of G (30-state, 5 outputs, 4 inputs)


\section*{All-Pass Error System Between G and Zeroth Order G Anticausal}

\section*{More About}

\section*{Algorithms}

Given a state-space \((A, B, C, D)\) of a system and \(k\), the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the \(k^{\text {th }}\) order reduced model.

1 Find the controllability and observability grammians \(P\) and \(Q\).
2 Form the descriptor
\[
E=Q P-\rho^{2} I
\]
where \(\sigma_{k}>\rho \geq \sigma_{k+1}\), and descriptor state-space

Take SVD of descriptor \(E\) and partition the result into \(k^{\text {th }}\) order truncation form
\[
\begin{aligned}
& {\left[\begin{array}{c|c}
E s-\bar{A} & \bar{B} \\
\hline \bar{C} & \bar{D}
\end{array}\right]=\left[\begin{array}{c|c}
\rho^{2} A^{T}+Q A P & Q B \\
\hline C P & D
\end{array}\right]} \\
& E=\left[U_{E 1}, U_{E 2}\right]\left[\begin{array}{c|c}
\Sigma_{E} 0 & 0 \\
\hline 0 & 0
\end{array}\right]\left[\begin{array}{c}
V_{E 1}^{T} \\
V_{E 2}^{T}
\end{array}\right]
\end{aligned}
\]

3 Apply the transformation to the descriptor state-space system above we have
\[
\begin{aligned}
& {\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]=\left[\begin{array}{c}
U_{E 1}^{T} \\
U_{E 2}^{T}
\end{array}\right]\left(\rho^{2} A^{T}+Q A P\right)\left[\begin{array}{ll}
V_{E 1} & V_{E 2}
\end{array}\right]} \\
& {\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right]=\left[\begin{array}{c}
U_{E 1}^{T} \\
U_{E 2}^{T}
\end{array}\right]\left[\begin{array}{ll}
Q B & \left.-C^{T}\right] \\
{\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right]=\left[\begin{array}{c}
C P \\
-\rho B^{T}
\end{array}\right]\left[\begin{array}{ll}
V_{E 1} & V_{E 2}
\end{array}\right]} \\
D_{1}=D
\end{array},=\right.\text {, }}
\end{aligned}
\]

4 Form the equivalent state-space model.
\[
\left[\begin{array}{cc}
\tilde{A} & \tilde{B} \\
\tilde{C} & \tilde{D}
\end{array}\right]=\left[\begin{array}{cc}
\Sigma_{E}^{-1}\left(A_{11}-A_{12} A_{22}\right. & \left.A_{21}\right) \\
\Sigma_{E}^{-1}\left(B_{1}-A_{12} A_{22} B_{2}\right) \\
C_{1}-C_{2} A_{22}^{\dagger} A_{21} & D_{1}-C_{2} A_{22}{ }^{\dagger} B_{2}
\end{array}\right]
\]

The final \(k^{\text {th }}\) order Hankel MDA is the stable part of the above state-space realization. Its anticausal part is stored in redinfo.Ganticausal.

The proof of the Hankel MDA algorithm can be found in [2]. The error system between the original system G and the Zeroth Order Hankel MDA \(G_{0}\) is an all-pass function [1].

\section*{References}
[1] Glover, K., "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their L-error Bounds," Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.
[2] Safonov, M.G., R.Y. Chiang, and D.J.N. Limebeer, "Optimal Hankel Model Reduction for Nonminimal Systems," IEEE Trans. on Automat. Contr., vol. 35, no. 4, April 1990, pp. 496-502.

\author{
See Also \\ reduce | balancmr | bstmr | ncfmr | schurmr | hankelsv
}

\section*{hankelsv}

Compute Hankel singular values for stable/unstable or continuous/discrete system

\section*{Syntax}
```

hankelsv(G)
hankelsv(G,ErrorType,style)
[sv_stab,sv_unstab]=hankelsv(G,ErrorType,style)

```

\section*{Description}
[sv_stab,sv_unstab]=hankelsv(G,ErrorType, style) returns a column vector SV_STAB containing the Hankel singular values of the stable part of G and SV_UNSTAB of anti-stable part (if it exists). The Hankel SV's of anti-stable part ss (a, b, c, d) is computed internally via ss (-a, -b, c, d). Discrete model is converted to continuous one via the bilinear transform.
hankelsv(G) with no output arguments draws a bar graph of the Hankel singular values such as the following:


This table describes optional input arguments for hankelsvd.
\begin{tabular}{|l|l|l|}
\hline Argument & Value & Description \\
\hline ERRORTYPE & 'add' & Regular Hankel SV's of G \\
& 'mult' & Hankel SV's of phase matrix \\
\hline 'ncf' & Hankel SV's of coprime factors \\
\hline STYLE & 'abs' & Absolute value \\
& logarithm scale \\
\hline
\end{tabular}

\section*{More About}

\section*{Algorithms}

IfErrorType = 'add', then hankelsv implements the numerically robust square root method to compute the Hankel singular values [1]. Its algorithm goes as follows:

Given a stable model G, with controllability and observability grammians P and Q, compute the SVD of P and Q :
```

[Up,Sp,Vp] = svd(P);
[Uq,Sq,Vq] = svd(Q);

```

Then form the square roots of the grammians:
```

Lr = Up*diag(sqrt(diag(Sp)));
Lo = Uq*diag(sqrt(diag(Sq)));

```

The Hankel singular values are simply:
\(\sigma_{\mathrm{H}}=\operatorname{svd}(\) Lo'*Lr \()\);
This method not only takes the advantages of robust SVD algorithm, but also ensure the computations stay well within the "square root" of the machine accuracy.

If ErrorType = 'mult', then hankelsv computes the Hankel singular value of the phase matrix of G [2].

If ErrorType = 'ncf', then hankelsv computes the Hankel singular value of the normalized coprime factor pair of the model [3].

\section*{References}
[1] Safonov, M.G., and R.Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.
[2] Safonov, M.G., and R.Y. Chiang, "Model Reduction for Robust Control: A Schur Relative Error Method," International J. of Adaptive Control and Signal Processing, Vol. 2, pp. 259-272, 1988.
[3] Vidyasagar, M., Control System Synthesis - A Factorization Approach. London: The MIT Press, 1985.

\author{
See Also \\ reduce | balancmr | bstmr | ncfmr | schurmr | hankelmr
}

\section*{hinfgs}

Synthesis of gain-scheduled \(H_{\infty}\) controllers

\section*{Syntax}
[gopt, pdK, R, S] = hinfgs(pdP,r,gmin,tol,tolred)

\section*{Description}

Given an affine parameter-dependent plant
\[
P\left\{\begin{array}{l}
\dot{x}=A(p) x+B_{1}(p) w+B_{2} u \\
z=C_{1}(p) x+D_{11}(p) w+D_{12} u \\
y=C_{2} x+D_{21} w+D_{22} u
\end{array}\right.
\]
where the time-varying parameter vector \(p(t)\) ranges in a box and is measured in real time, hinfgs seeks an affine parameter-dependent controller
\[
K\left\{\begin{array}{l}
\dot{\zeta}=A_{K}(p) \zeta+B_{K}(p) y \\
u=C_{K}(p) \zeta+D_{K}(P) y
\end{array}\right.
\]
scheduled by the measurements of \(p(t)\) and such that
- \(K\) stabilizes the closed-loop system

for all admissible parameter trajectories \(p(t)\)
- \(K\) minimizes the closed-loop quadratic \(H_{\infty}\) performance from \(w\) to \(z\).

The description pdP of the parameter-dependent plant \(P\) is specified with psys and the vector \(r\) gives the number of controller inputs and outputs (set \(r=[p 2, \mathrm{~m} 2]\) if \(y \in R^{p 2}\) and \(u \in R^{m 2}\) ). Note that hinfgs also accepts the polytopic model of \(P\) returned, e.g., by aff2pol.
hinfgs returns the optimal closed-loop quadratic performance gopt and a polytopic description of the gain-scheduled controller pdK. To test if a closed-loop quadratic performance \(\gamma\) is achievable, set the third input gmin to \(\gamma\). The arguments tol and tolred control the required relative accuracy on gopt and the threshold for order reduction. Finally, hinfgs also returns solutions \(R, S\) of the characteristic LMI system.

\section*{Controller Implementation}

The gain-scheduled controller pdK is parametrized by \(p(t)\) and characterized by the values \(K_{\Pi j}\) of \(\left(\begin{array}{ll}A_{K}(p) & B_{K}(p) \\ C_{K}(p) & D_{K}(p)\end{array}\right)\) at the corners \({ }^{3}{ }_{j}\) of the parameter box. The command Kj = psinfo(pdK,'sys',j)
returns the \(j\)-th vertex controller \(K_{\Pi j}\) while
```

pv = psinfo(pdP,'par')
vertx = polydec(pv)
Pj = vertx(:,j)

```
gives the corresponding corner \({ }_{j}\) of the parameter box ( pv is the parameter vector description).

The controller scheduling should be performed as follows. Given the measurements \(p(t)\) of the parameters at time \(t\),

1 Express \(p(t)\) as a convex combination of the \({ }_{j}{ }_{j}\) :
\[
p(t)=\alpha_{1}{ }^{3}{ }_{1}+\ldots+\alpha_{N}{ }^{3}{ }_{N}, \alpha_{j} \geq 0, \sum_{i=1}^{N} \alpha_{j}=1
\]

This convex decomposition is computed by polydec.

2 Compute the controller state-space matrices at time \(t\) as the convex combination of the vertex controllers \(K_{\Pi j}\) :
\[
\left(\begin{array}{ll}
A_{K}(t) & B_{K}(t) \\
C_{K}(t) & D_{K}(t)
\end{array}\right)=\sum_{i=1}^{N} \alpha_{j} K_{\Pi_{i}}
\]

3 Use \(A_{K}(t), \mathrm{B}_{K}(t), \mathrm{C}_{K}(t), \mathrm{D}_{K}(t)\) to update the controller state-space equations.

\section*{References}

Apkarian, P., P. Gahinet, and G. Becker, "Self-Scheduled \(H_{\infty}\) Control of Linear Parameter-Varying Systems," Automatica, 31 (1995), pp. 1251-1261.

Becker, G., Packard, P., "Robust Performance of Linear-Parametrically Varying Systems Using Parametrically-Dependent Linear Feedback," Systems and Control Letters, 23 (1994), pp. 205-215.

Packard, A., "Gain Scheduling via Linear Fractional Transformations," Syst. Contr. Letters, 22 (1994), pp. 79-92.

\author{
See Also \\ psys | pvec | pdsimul | polydec
}

\section*{hinfnorm}
\(\mathrm{H}_{\infty}\) norm of dynamic system

\section*{Syntax}
```

ninf = hinfnorm(sys)
ninf = hinfnorm(sys,tol)
[ninf,fpeak] = hinfnorm(___)

```

\section*{Description}
ninf \(=\) hinfnorm(sys) returns the \(H_{\infty}\) in absolute units of the dynamic system model, sys.
- If sys is a stable SISO system, then the \(H_{\infty}\) norm is the peak gain, the largest value of the frequency response magnitude.
- If sys is a stable MIMO system, then the \(H_{\infty}\) norm is the largest singular value across frequencies.
- If sys is an unstable system, then the \(H_{\infty}\) norm is defined as Inf.
- If sys is a model that has tunable or uncertain parameters, then hinfnorm evaluates the \(H_{\infty}\) norm at the current or nominal value of sys.
- If is a model array, then hinfnorm returns an array of the same size as sys, where ninf(k) = hinfnorm(sys(:,:,k)).

For stable systems, hinfnorm(sys) is the same as getPeakGain(sys).
ninf \(=\) hinfnorm(sys,tol) returns the \(H_{\infty}\) norm of sys with relative accuracy tol.
[ninf,fpeak] = hinfnorm( __ ) also returns the frequency, fpeak, at which the peak gain or largest singular value occurs. You can use this syntax with any of the input arguments in previous syntaxes. If sys is unstable, then fpeak = Inf.

\section*{Examples}

\section*{Norm of MIMO System}

Compute the \(H_{\infty}\) norm of the following 2-input, 2-output dynamic system and the frequency at which the peak singular value occurs.
\[
G(s)=\left[\begin{array}{cc}
0 & \frac{3 s}{s^{2}+s+10} \\
\frac{s+1}{s+5} & \frac{2}{s+6}
\end{array}\right]
\]
```

G = [0 tf([3 0],[1 1 10]);tf([1 1],[1 5]),tf(2,[1 6])];

```
[ninf,fpeak] = hinfnorm(G)
ninf =
    3.0150
fpeak =
    3.1623

The \(H_{\infty}\) norm of a MIMO system is its maximum singular value. Plot the singular values of \(G\) and compare the result from hinfnorm.
sigma(G), grid

Singular Values


The values ninf and fpeak are consistent with the singular value plot, which displays the values in dB .

\section*{Input Arguments}

\section*{sys - Input dynamic system}
dynamic system model | model array
Input dynamic system, specified as any dynamic system model or model array. sys can be SISO or MIMO.

\section*{tol - Relative accuracy}
0.01 (default) | positive real scalar

Relative accuracy of the peak gain, specified as a positive real scalar value. hinfnorm calculates ninf such that the fractional difference between ninf and the true \(H_{\infty}\) norm of sys is no greater than tol.

\section*{Output Arguments}

\section*{ninf - H norm of dynamic system}

Inf | scalar | array
\(H_{\infty}\) norm of sys, returned as Inf, a scalar value, or an array.
- If sys is a single stable model, then ninf is a scalar value.
- If sys is a single unstable model, then ninf is Inf.
- If sys is a model array, then ninf is an array of the same size as sys, where ninf(k) = hinfnorm(sys(:,:,k)).

\section*{fpeak - Frequency of peak gain or largest singular value \\ Inf | nonnegative real scalar | array}

Frequency at which the peak gain or largest singular value occurs, returned as Inf, a nonnegative real scalar value, or an array. The frequency is expressed in units of rad/TimeUnit, relative to the TimeUnit property of sys.
- If sys is a single stable model, then fpeak is a scalar.
- If sys is a single unstable model, then fpeak is Inf.
- If sys is a model array, then fpeak is an array of the same size as sys.In this case, fpeak ( \(k\) ) is the peak gain or largest singular value frequency of the \(k\) th model in the array.

\author{
See Also \\ freqresp | getPeakGain | sigma \\ Introduced in R2013b
}

\section*{hinfstruct}
\(H_{\infty}\) tuning of fixed-structure controllers

\section*{Syntax}
```

CL = hinfstruct(CLO)
[CL,gamma,info] = hinfstruct(CLO)
[CL,gamma,info] = hinfstruct(CLO,options)
[C,gamma,info] = hinfstruct(P,CO,options)

```

\section*{Description}

CL = hinfstruct(CLO) tunes the free parameters of the tunable genss model CLO. This tuning minimizes the \(H_{\infty}\) norm of the closed-loop transfer function modeled by CLO. The model CLO represents a closed-loop control system that includes tunable components such as controllers or filters. CLO can also include weighting functions that capture design requirements.
[CL,gamma,info] = hinfstruct(CLO) returns gamma (the minimum \(H_{\infty}\) norm) and a data structure info with additional information about each optimization run.
[CL,gamma,info] = hinfstruct(CLO,options) allows you to specify additional options for the optimizer using hinfstructOptions.
[C,gamma,info] = hinfstruct( \(\mathrm{P}, \mathrm{CO}\), options) tunes the parametric controller blocks CO. This tuning minimizes the \(H_{\infty}\) norm of the closed-loop system \(C L O=\operatorname{lft}(P, C O)\). To use this syntax, express your control system and design requirements as a Standard Form model, as in the following illustration:

\(P\) is a numeric LTI model that includes the fixed elements of the control architecture. \(P\) can also include weighting functions that capture design requirements. CO can be a single tunable component (for example, a Control Design Block or a genss model) or a cell array of multiple tunable components. C is a parametric model or array of parametric models of the same types as CO.

\section*{Input Arguments}

\section*{CLO}

Generalized state-space (genss) model describing the weighted closed-loop transfer function of a control system. hinfstruct minimizes the \(H_{\infty}\) norm of CLO.

CLO includes both the fixed and tunable components of the control system in a single genss model. The tunable components of the control system are represented as Control Design Blocks, and are stored in the CLO.Blocks property of the genss model.

\section*{P}

Numeric LTI model representing the fixed elements of the control architecture to be tuned. P can also include weighting functions that capture design requirements. You can obtain P in two ways:
- In MATLAB, model the fixed elements of your control system as numeric LTI models. Then, use block-diagram building functions (such as connect and feedback) to build \(P\) from the modeled components. Also include any weighting functions that represent your design requirements.
- If you have a Simulink \({ }^{\circledR}\) model of your control system and have Simulink Control Design \({ }^{\mathrm{TM}}\), use linlft to obtain a linear model of the fixed elements of your control system. The linlft command linearizes your Simulink model, excluding specified Simulink blocks (the blocks that represent the controller elements you want to tune). If you are using weighting functions to represent your design requirements, connect them in series with the linear model of your plant to obtain \(P\).

\section*{CO}

Single tunable component or cell array of tunable components of the control structure.
Each entry in CO represents one tunable element of your control architecture, such as a PID controller, a gain block, or a fixed-order transfer function. The entries of CO can be Control Design Blocks or genss models.

For more information and examples of creating tunable models, see "Models with Tunable Coefficients" in the Control System Toolbox \({ }^{\text {TM }}\) User's Guide.

\section*{options}

Set of options for hinfstruct. Use hinfstructOptions to define options. For information about the available options, see the hinfstructOptions reference page.

\section*{Output Arguments}

\section*{CL}

Tuned version of the generalized state-space (genss) model CLO.

The hinfstruct command tunes the free parameters of CLO to achieve a minimum \(H_{\infty}\) norm. CL.Blocks contains the same types of Control Design Blocks as CLO.Blocks, except that in CL, the parameters have tuned values.

To access the tuned parameter values, use getValue. You can also access them directly in CL. Blocks.

\section*{C}

Tuned versions of the parametric models \(\mathbf{C O}\).
When CO is a single parametric model, C is a parametric model of the same type, with tuned parameter values.

When CO is a cell array of parametric models, C is also a cell array. The entries in C are parametric models of the same type as the corresponding entries in CO.

\section*{gamma}

Best achieved value for the closed-loop \(H_{\infty}\) norm.
In some cases, hinfstruct performs more than one minimization run (when the hinfstructOptions option RandomStarts > 0). In such cases, gamma is the smallest \(H_{\infty}\) norm of all runs.

\section*{info}

Data structure array containing results from each optimization run. The fields of info are:
- Objective - Minimum \(H_{\infty}\) norm value for each run.

When RandomStarts = 0, Objective = gamma.
- Iterations - Number of iterations before convergence for each run.
- TunedBlocks - Tuned control design blocks for each run.

TunedBlocks differs from C in that C contains only the result from the best run. When RandomStarts \(=0\), TunedBlocks \(=\mathrm{C}\).

\section*{More About}

\section*{Tips}
- hinfstruct is related to hinfsyn, which also uses \(H_{\infty}\) techniques to design a controller for a MIMO plant. However, unlike hinfstruct, hinfsyn imposes no restriction on the structure and order of the controller. For that reason, hinfsyn always returns a smaller gamma than hinfstruct. You can therefore use hinfsyn to obtain a lower bound on the best achievable performance.

\section*{Algorithms}
hinfstruct uses specialized nonsmooth optimization techniques to enforce closedloop stability and minimize the \(H_{\infty}\) norm as a function of the tunable parameters. These techniques are based on the work in [1].
hinfstruct computes the \(H_{\infty}\) norm using the algorithm of [2] and structure-preserving eigensolvers from the SLICOT library. For more information about the SLICOT library, see http://slicot.org.
- "What Is hinfstruct?"
- "Formulating Design Requirements as H-Infinity Constraints"
- "Structured H-Infinity Synthesis Workflow"
- "Models with Tunable Coefficients"

\section*{References}
[1] P. Apkarian and D. Noll, "Nonsmooth H-infinity Synthesis," IEEE Transactions on Automatic Control, Vol. 51, Number 1, 2006, pp. 71-86.
[2] Bruisma, N.A. and M. Steinbuch, "A Fast Algorithm to Compute the \(\mathrm{H}_{\infty}\)-Norm of a Transfer Function Matrix," System Control Letters, 14 (1990), pp. 287-293.

\section*{See Also}
genss | getValue | hinfstructOptions | hinfsyn | tunableGain | tunablePID | tunableSS | tunableTF

\section*{Related Examples}
- "Build Tunable Closed-Loop Model for Tuning with hinfstruct"
- Loop Shaping Design with HINFSTRUCT
- Decoupling Controller for a Distillation Column
- Fixed-Structure Autopilot for a Passenger Jet

\section*{hinfstrucłOptions}

Set options for hinfstruct

\section*{Syntax}
options = hinfstructOptions
options = hinfstructOptions(Name, Value)

\section*{Description}
options \(=\) hinfstructOptions returns the default option set for the hinfstruct command.
options = hinfstructOptions(Name, Value) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
hinfstructOptions takes the following Name arguments:

\section*{'Display'}

String determining the amount of information to display during hinfstruct optimization runs.

Display takes the following values:
- 'off' - hinfstruct runs in silent mode, displaying no information during or after the run.
- 'iter' - display optimization progress after each iteration. The display includes the value of the closed-loop \(H_{\infty}\) norm after each iteration. The display also includes a Progress value indicating the percent change in the \(H_{\infty}\) norm from the previous iteration.
- 'final' - display a one-line summary at the end of each optimization run. The display includes the minimized value of the closed-loop \(H_{\infty}\) norm and the number of iterations for each run.

Default: 'final'

\section*{'MaxIter'}

Maximum number of iterations in each optimization run.
Default: 300

\section*{'RandomStart'}

Number of additional optimizations starting from random values of the free parameters in the controller.

If RandomStart \(=0\), hinfstruct performs a single optimization run starting from the initial values of the tunable parameters. Setting RandomStart \(=N>0\) runs \(N\) additional optimizations starting from \(N\) randomly generated parameter values.
hinfstruct finds a local minimum of the gain minimization problem. To increase the likelihood of finding parameter values that meet your design requirements, set RandomStart > 0 . You can then use the best design that results from the multiple optimization runs.

Use with UseParallel = true to distribute independent optimization runs among MATLAB workers (requires Parallel Computing Toolbox \({ }^{\text {TM }}\) software).

Default: 0
'UseParallel'
Parallel processing flag.
Set to true to enable parallel processing by distributing randomized starts among workers in a parallel pool. If there is an available parallel pool, then the software
performs independent optimization runs concurrently among workers in that pool. If no parallel pool is available, one of the following occurs:
- If Automatically create a parallel pool is selected in your Parallel Computing Toolbox preferences, then the software starts a parallel pool using the settings in those preferences.
- If Automatically create a parallel pool is not selected in your preferences, then the software performs the optimization runs successively, without parallel processing.

If Automatically create a parallel pool is not selected in your preferences, you can manually start a parallel pool using parpool before running the tuning command.

Using parallel processing requires Parallel Computing Toolbox software.
Default: false

\section*{'TargetGain'}

Target \(H_{\infty}\) norm.
The hinfstruct optimization stops when the \(H_{\infty}\) norm (peak closed-loop gain) falls below the specified TargetGain value.

Set TargetGain \(=0\) to optimize controller performance by minimizing the peak closedloop gain. Set TargetGain = Inf to just stabilize the closed-loop system.

Default: 0

\section*{'TolGain'}

Relative tolerance for termination. The optimization terminates when the \(H_{\infty}\) norm decreases by less than TolGain over 10 consecutive iterations. Increasing TolGain speeds up termination, and decreasing TolGain yields tighter final values.

Default: 0.001

\section*{'MaxFrequency'}

Maximum closed-loop natural frequency.
Setting MaxFrequency constrains the closed-loop poles to satisfy |p|< MaxFrequency.

To let hinfstruct choose the closed-loop poles automatically based upon the system's open-loop dynamics, set MaxFrequency = Inf. To prevent unwanted fast dynamics or high-gain control, set MaxFrequency to a finite value.

Specify MaxFrequency in units of 1/TimeUnit, relative to the TimeUnit property of the system you are tuning.

\section*{Default: Inf}

\section*{'MinDecay'}

Minimum decay rate for closed-loop poles
Constrains the closed-loop poles to satisfy \(\operatorname{Re}(\mathrm{p})<-\operatorname{MinDecay}\). Increase this value to improve the stability of closed-loop poles that do not affect the closed-loop gain due to pole/zero cancellations.

Specify MinDecay in units of 1/TimeUnit, relative to the TimeUnit property of the system you are tuning.

Default: 1e-7

\section*{Output Arguments}

\section*{options}

Option set containing the specified options for the hinfstruct command.

\section*{Examples}

\section*{Create Options Set for hinfstruct}

Create an options set for a hinfstruct run using three random restarts and a stability offset of 0.001 . Also, configure the hinfstruct run to stop as soon as the closed-loop gain is smaller than 1.
```

options = hinfstructOptions('TargetGain',1,...
'RandomStart',3,'StableOffset',1e-3);

```

Alternatively, use dot notation to set the values of options.
```

options = hinfstructOptions;
options.TargetGain = 1;
options.RandomStart = 3;
options.StableOffset = 1e-3;

```

\section*{Configure Option Set for Parallel Optimization Runs}

Configure an option set for a hinfstruct run using 20 random restarts. Execute these independent optimization runs concurrently on multiple workers in a parallel pool.

If you have the Parallel Computing Toolbox software installed, you can use parallel computing to speed up hinfstruct tuning of fixed-structure control systems. When you run multiple randomized hinfstruct optimization starts, parallel computing speeds up tuning by distributing the optimization runs among workers.

If Automatically create a parallel pool is not selected in your Parallel Computing Toolbox preferences, manually start a parallel pool using parpool. For example:
```

parpool;

```

If Automatically create a parallel pool is selected in your preferences, you do not need to manually start a pool.

Create an hinfstructOptions set that specifies 20 random restarts to run in parallel.
```

options = hinfstructOptions('RandomStart',20,'UseParallel',true);

```

Setting UseParallel to true enables parallel processing by distributing the randomized starts among available workers in the parallel pool.

Use the hinfstructOptions set when you call hinfstruct. For example, suppose you have already created a tunable closed loop model CLO. In this case, the following command uses parallel computing to tune CLO.
```

[CL,gamma,info] = hinfstruct(CLO,options);

```

\section*{See Also}
hinfstruct

\section*{hinfsyn}

Compute \(H_{\infty}\) optimal controller for LTI plant

\section*{Syntax}
```

[K,CL,GAM,INFO] = hinfsyn(P)
[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON)
[K,CL,GAM,INFO] = hinfsyn(P,NMEAS,NCON,KEY1,VALUE1,KEY2,VALUE2,...)

```

\section*{Description}
hinfsyn computes a stabilizing \(H_{\infty}\) optimal lti/ss controller K for a partitioned lti plant \(P\).
\[
P=\left[\begin{array}{l|ll}
A & B_{1} & B_{2} \\
\hline C_{1} & D_{11} & D_{12} \\
C_{2} & D_{21} & D_{22}
\end{array}\right]
\]

The controller, K, stabilizes the \(P\) and has the same number of states as \(P\). The system P is partitioned where inputs to \(B_{1}\) are the disturbances, inputs to \(B_{2}\) are the control inputs, output of \(C_{1}\) are the errors to be kept small, and outputs of \(C_{2}\) are the output measurements provided to the controller. \(B_{2}\) has column size (NCON) and \(C_{2}\) has row size (NMEAS). The optional KEY and VALUE inputs determine tolerance, solution method and so forth.

The closed-loop system is returned in CL. This closed-loop system is given by CL = lft \((P, K)\) as in the following diagram.


The achieved \(H_{\infty}\) cost \(\gamma\) is returned as GAM. The struct array INFO contains additional information about the design.

Optional Input Arguments
\begin{tabular}{|l|l|l|}
\hline Property & Value & Description \\
\hline 'GMAX' & real & Initial upper bound on GAM (default=Inf) \\
\hline 'GMIN ' & real & Initial lower bound on GAM (default=0) \\
\hline 'TOLGAM' & real & Relative error tolerance for GAM (default=.01) \\
\hline 'SO' & real & \begin{tabular}{l} 
Frequency SO at which entropy is evaluated, only \\
applies to METHOD 'maxe ' (default=Inf)
\end{tabular} \\
\hline 'METHOD ' & 'ric' & Standard 2-Riccati solution (default) \\
\hline & 'lmi ' & LMI solution \\
\hline & 'maxe ' & Maximum entropy solution \\
\hline 'DISPLAY' & 'off' & \begin{tabular}{l} 
No command window display, or command window \\
displays synthesis progress information (default)
\end{tabular} \\
\hline
\end{tabular}

When DISPLAY='on', the hinfsyn program displays several variables indicating the progress of the algorithm. For each \(\gamma\) value being tested, the minimum magnitude, real part of the eigenvalues of the \(X\) and \(Y\) Hamiltonian matrices are displayed along with the minimum eigenvalue of \(X_{\infty}\) and \(Y_{\infty}\), which are the solutions to the \(X\) and \(Y\) Riccati equations, respectively. The maximum eigenvalue of \(X_{\infty} Y_{\infty}\), scaled by \(\gamma^{-2}\), is also displayed. A \# sign is placed to the right of the condition that failed in the printout.
\begin{tabular}{|ll|}
\hline Output Arguments & Description \\
\hline K & lti controller \\
\hline CL= lft \((\mathrm{P}, \mathrm{K})\) & lti closed-loop system \(T_{y_{1} u_{1}}\) \\
\hline \begin{tabular}{l} 
GAM \(=\) \\
norm \((\mathrm{CL}\), Inf \()\)
\end{tabular} & \(H_{\infty}\) cost \(\gamma=\left\|T_{y_{1} u_{1}}\right\|_{\infty}\) \\
\hline INFO & Additional output information \\
\hline
\end{tabular}

Additional output - structure array INFO containing possible additional information depending on METHOD)
\begin{tabular}{|l|l|}
\hline INFO.AS & All solutions controller, lti two-port LFT \\
\hline INFO.KFI & Full information gain matrix (constant feedback \\
& \(u_{2}(t)=K_{F I}\left[\begin{array}{c}x(t) \\
u_{1}(t)\end{array}\right]\) \\
\hline INFO. KFC & \begin{tabular}{l} 
Full control gain matrix (constant output-injection; \(K_{F C}\) is the \\
dual of \(\left.K_{F I}\right)\)
\end{tabular} \\
\hline INFO. GAMFI & \(H_{\infty}\) cost for full information \(K_{F I}\) \\
\hline INFO. GAMFC & \(H_{\infty}\) cost for full control \(K_{F C}\) \\
\hline
\end{tabular}

\section*{Examples}

Following are three simple problems solved via hinfsyn.
Example 1: A random 4-by-5 plant with 3-states, NMEAS=2, NCON=2
rng(0,'twister');
P = rss (3,4,5);
[K,CL, GAM] = hinfsyn(P, 2, 2) ;
The optimal \(H_{\infty}\) cost in this case is GAM \(=1.3940\). You verify
that \(\left\|T_{y_{1} u_{1}}\right\|_{\infty} \triangleq \sup _{\omega} \sigma_{\max }\left(T_{y_{1} u_{1}}(j \omega)\right)<\gamma\) with a sigma plot
```

sigma(CL,ss(GAM));

```

Example 2: Mixed-Sensitivity
```

G(s)=\frac{s-1}{s-1},\mp@subsup{W}{1}{}=\frac{0.1(s+1000)}{100s+1},\mp@subsup{W}{2}{}=0.1, no W}\mp@subsup{W}{3}{}
s=zpk('s');
G=(s-1)/(s+1);
W1=0.1*(s+100)/(100*s+1); W2=0.1; W3=[];
P=augw(G,W1,W2,W3);
[K,CL,GAM]=hinfsyn(P);
sigma(CL,ss(GAM));

```

In this case, GAM \(=0.1854=-14.6386 \mathrm{db}\)
Example 3: Mixed sensitivity with \(W_{1}\) removed.
```

s=zpk('s');
G=(s-1)/(s+1);
W1=[]; W2=0.1; W3=[];
P=augw(G,W1,W2,W3);
[K,CL,GAM]=hinfsyn(P);

```

In this case, \(G A M=0, K=0\), and \(C L=K *(1+G * K)=0\).

\section*{Limitation}

The plant must be stabilizable from the control inputs \(u\) and detectable from the measurement output \(y\) :
- \(\left(A, B_{2}\right)\) must be stabilizable and \(\left(C_{2}, A\right)\) must be detectable.

Otherwise, hinfsyn returns an error.

\section*{More About}

\section*{Algorithms}

The default 'ric ' method uses the two-Riccati formulae ([1],[2]) with loopshifting [3]. In the case of the ' lmi' method, hinfsyn employs the LMI technique ([4],[5],[6]). With
'METHOD' 'maxe ', K returns the max entropy \(H_{\infty}\) controller that minimize an entropy integral relating to the point s0; i.e.,
\[
\text { Entropy }=\frac{\gamma^{2}}{2 \pi} \int_{-\infty}^{\infty} \ln \left|\operatorname{det} I-\gamma^{-2} T_{y_{1} u_{1}}(j \omega)^{\prime} T_{y_{1} u_{1}}(j \omega)\right|\left[\frac{s_{o}{ }^{2}}{s_{0}{ }^{2}+\omega^{2}}\right] d \omega
\]
where \(T_{y_{1} u_{1}}\) is the closed-loop transfer function CL. With all methods, hinfsyn uses a standard \(\gamma\)-iteration technique to determine the optimal value of \(\gamma\). Starting with high and low estimates of \(\gamma\). The \(\gamma\)-iteration is a bisection algorith \(m\) that iterates on the value of \(\gamma\) in an effort to approach the optimal \(H_{\infty}\) control design. The stopping criterion for the bisection algorithm requires the relative difference between the last \(y\) value that failed and the last \(\gamma\) value that passed be less than TOLGAM (default \(=.01\) )

At each value of \(\gamma\), the algorithm employed requires tests to determine whether a solution exists for a given \(\gamma\) value. In the case of the 'ric' method, the conditions checked for the existence of a solution are:
- \(H\) and \(J\) Hamiltonian matrices (which are formed from the state-space data of \(P\) and the \(\gamma\) level) must have no imaginary-axis eigenvalues.
- the stabilizing Riccati solutions \(X_{\infty}\) and \(Y_{\infty}\) associated with the Hamiltonian matrices must exist and be positive, semi-definite.
- spectral radius of \(\left(X_{\infty}, Y_{\infty}\right)\) must be less than or equal to \(\gamma^{2}\).

When, DISPLAY is 'on', the hinfsyn program displays several variables, which indicate which of the above conditions are satisfied for each \(\gamma\) value being tested. In the case of the default 'ric' method, the display includes the current value of \(y\) being tested, real part of the eigenvalues of the \(X\) and \(Y\) Hamiltonian matrices along with the minimum eigenvalue of \(X_{\infty}\) and \(Y_{\infty}\), which are the solutions to the \(X\) and \(Y\) Riccati equations, respectively. The maximum eigenvalue of \(X_{\infty} Y_{\infty}\), scaled by \(\gamma^{-2}\), is also displayed. A \# sign is placed to the right of the condition that failed in the printout. A similar display is produced with method ' \(1 m i\) '

The algorithm works best when the following conditions are satisfied by the plant: \(D_{12}\) and \(D_{21}\) have full rank.
\[
\left[\begin{array}{cc}
A-j \omega I & B_{2} \\
C_{1} & D_{12}
\end{array}\right] \text { has full column rank for all } \omega \in R
\]
\[
\left[\begin{array}{cc}
A-j \omega I & B_{1} \\
C_{2} & D_{21}
\end{array}\right] \text { has full row rank for all } \omega \in R .
\]

When the above rank conditions do not hold, the controller may have undesirable properties: If \(D_{12}\) and \(D_{21}\) are not full rank, the \(H_{\infty}\) controller K may have large highfrequency gain. If either of the latter two rank conditions does not hold at some frequency \(\omega\), the controller may have very lightly damped poles near that frequency \(\omega\).

In general, the solution to the infinity-norm optimal control problem is non-unique. The controller returned by hinfsyn is only one particular solution, K. When the 'ric' method is selected, the INFO. AS field of INFO contains the all- solution controller parameterization \(K_{A S}\). All solutions to the infinity-norm control problem are parameterized by a free stable contraction map \(Q\), which is constrained by \(\|Q\|_{\infty}<1\). In other words, the solutions include every stabilizing controller \(K(s)\) that makes
\[
\left\|T_{y_{1} u_{1}}\right\|_{\infty} \triangleq \sup _{\omega} \sigma_{\max }\left(T_{y_{1} u_{1}}(j \omega)\right)<\gamma .
\]

These controllers are given by:
\(K=l f t(I N F O . A S, Q)\)
where \(Q\) is a stable LTI system satisfying norm ( \(Q\), Inf) \(<1\).


An important use of the infinity-norm control theory is for direct shaping of closed-loop singular value Bode plots of control systems. In such cases, the system \(P\) is typically the plant augmented with suitable loop-shaping filters - see mixsyn.

\section*{References}
[1] Glover, K., and J.C. Doyle, "State-space formulae for all stabilizing controllers that satisfy an \(\mathrm{H}_{\infty}\) norm bound and relations to risk sensitivity," Systems \& Control Letters, vol. 11, no. 8, pp. 167-172, 1988.
[2] Doyle, J.C., K. Glover, P. Khargonekar, and B. Francis, "State-space solutions to standard \(\mathrm{H}_{2}\) and \(\mathrm{H}_{\infty}\) control problems," IEEE Transactions on Automatic Control, vol. 34, no. 8, pp. 831-847, August 1989
[3] Safonov, M.G., D.J.N. Limebeer, and R.Y. Chiang, "Simplifying the \(\mathrm{H}_{\infty}\) Theory via Loop Shifting, Matrix Pencil and Descriptor Concepts", Int. J. Contr., vol. 50, no. 6, pp. 2467-2488, 1989.
[4] Packard, A., K. Zhou, P. Pandey, J. Leonhardson, and G. Balas, "Optimal, constant I/ O similarity scaling for full-information and state-feedback problems," Systems \& Control Letters, vol. 19, no. 4, pp. 271-280, 1992.
[5] Gahinet, P., and P. Apkarian, "A linear matrix inequality approach to \(\mathrm{H}_{\infty}\)-control," Int J. Robust and Nonlinear Control, vol. 4, no. 4, pp. 421-448, 1994.
[6] Iwasaki, T., and R.E. Skelton, "All controllers for the general \(\mathrm{H}_{\infty}\)-control problem: LMI existence conditions and state space formulas," Automatica, vol. 30, no. 8, pp. 1307-1317, 1994.

\author{
See Also \\ augw | h2syn | hinfstruct | mktito | ncfsyn | loopsyn
}

\section*{icomplexify}

Helper function for complexify

\section*{Syntax}

DeltaR = icomplexify(DeltaCR)

\section*{Description}
icomplexify works on structures to extract a real value from a pair of related fields.
DeltaR = icomplexify (DeltaCR) affects field pairs of DeltaCR named 'foo' and 'foo_cmpxfy' where 'foo' can be any field name. DeltaR is the same as DeltaCR except that the fields 'foo_cmpxfy' are removed. complexify, by default, complexifies the real uncertainty with ucomplex atoms, though optionally ultidyn atoms can be used. If a ucomplex uncertainty was used to complexify the uncertain system, the real parts of 'foo_cmpxfy' are added to the real parts of 'foo'. If a ultidyn uncertainty was used to complexify the uncertain system, only the real parts of 'foo' are returned.

\author{
See Also \\ complexify | robuststab
}

\section*{iconnect}

Create empty iconnect (interconnection) objects

\section*{Syntax}

H = iconnect

\section*{Description}

Interconnection objects (class iconnect) are an alternative to sysic, and are used to build complex interconnections of uncertain matrices and systems.

An iconnect object has 3 fields to be set by the user, Input, Output and Equation. Input and Output are icsignal objects, while Equation.is a cell-array of equality constraints (using equate) on icsignal objects. Once these are specified, then the System property is the input/output model, implied by the constraints in Equation. relating the variables defined in Input and Output.

\section*{Examples}
iconnect can be used to create the transfer matrix \(M\) as described in the following figure.


Create three scalar icsignal: r, e and y. Create an empty iconnect object, M.
Define the output of the interconnection to be [e; y], and the input to be r. Define two constraints among the variables: \(e=r-y\), and \(y=(2 / s)\) e. Get the transfer function representation of the relationship between the input (r) and the output [e; y].
```

r = icsignal(1);
e = icsignal(1);
y = icsignal(1);
M = iconnect;

```
```

M.Input = r;
M.Output = [e;y];
M.Equation{1} = equate(e,r-y);
M.Equation{2} = equate(y,tf(2,[1 0])*e);
tf(M.System)

```

The transfer functions from input to outputs are
```

 S
 \#1: ----
s + 2
2
\#2:
s + 2

```

By not explicitly introducing \(e\), this can be done more concisely with only one equality constraint.
```

r = icsignal(1);
y = icsignal(1);
N = iconnect;
N.Input = r;
N.Output = [r-y;y];
N.Equation{1} = equate(y,tf(2,[1 0])*(r-y));
tf(N.System)

```

You have created the same transfer functions from input to outputs.
```

 S
 \#1: -----
s + 2
-2
s + 2

```

You can also specify uncertain, multivariable interconnections using iconnect. Consider two uncertain motor/generator constraints among 4 variables [V; I; T; W], V-R*I\(K * W=0\), and \(T=K * I\). Find the uncertain \(2 \times 2\) matrix \(B\) so that \([V ; T]=B *[W ; I]\).
```

R = ureal('R',1,'Percentage',[-10 40]);
K = ureal('K',2e-3,'Percentage',[-30 30]);
V = icsignal(1);
I = icsignal(1);
T = icsignal(1);

```
```

W = icsignal(1);
M = iconnect;
M.Input = [W;I];
M.Output = [V;T];
M.Equation{1} = equate(V-R*I-K*W,iczero(1));
M.Equation{2} = equate(T,K*I);
B = M.System
UMAT: 2 Rows, 2 Columns
K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences
R: real, nominal = 1, variability = [-10 40]%, 1 occurrence
B.NominalValue
ans =
0.0020 1.0000

```

A simple system interconnection, identical to the system illustrated in the sysic reference pages. Consider a three-input, two-output state-space matrix \(T\),

which has internal structure

```

M = iconnect;
noise = icsignal(1);
deltemp = icsignal(1);
setpoint = icsignal(1);
yp = icsignal(2);
rad2deg = 57.3
rad2deg =
57.3000
M.Equation{1} = equate(yp,P*[W*deltemp;A*K*[noise+yp(2);setpoint]]);
M.Input = [noise;deltemp;setpoint];
M.Output = [rad2deg*yp(1); setpoint-yp(2)];
T = M.System;
size(T)
State-space model with 2 outputs, 3 inputs, and 6 states.

```

\section*{Limitations}

The syntax for iconnect objects and icsignals is very flexible. Without care, you can build inefficient (i.e., nonminimal) representations where the state dimension of the interconnection is greater than the sum of the state dimensions of the components. This is in contrast to sysic. In sysic, the syntax used to specify inputs to systems (the input_to_ListedSubSystemName variable) forces you to include each subsystem of the interconnection only once in the equations. Hence, interconnections formed with sysic are componentwise minimal. That is, the state dimension of the interconnection equals the sum of the state dimensions of the components.

\section*{More About}

\section*{Algorithms}

Each equation represents an equality constraint among the variables. You choose the input and output variables, and the imp2exp function makes the implicit relationship between them explicit.

\author{
See Also \\ icsignal | sysic
}

\section*{icsignal}

Create icsignal object of specified dimension

\section*{Syntax}
```

v = icsignal(n);
v = icsignal(n,'name')

```

\section*{Description}
icsignal creates an icsignal object, which is a symbolic column vector. The icsignal object is used with iconnect objects to specify signal constraints described by the interconnection of components.
\(v=\) icsignal ( \(n\) ) creates an icsignal object of vector length \(n\). The value of \(n\) must be a nonnegative integer. icsignal objects are symbolic column vectors, used in conjunction with iconnect (interconnection) objects to specify the signal constraints described by an interconnection of components.
\(\mathrm{v}=\) icsignal( n , name) creates an icsignal object of dimension n , with internal name identifier given by the character string argument name.

\author{
See Also \\ iconnect | sysic
}

\section*{imp2ss}

System realization via Hankel singular value decomposition

\section*{Syntax}
```

[a,b,c,d,totbnd,hsv] = imp2ss(y)
[a,b,c,d,totbnd,hsv] = imp2ss(y,ts,nu,ny,tol)
[ss,totbnd,hsv] = imp2ss(imp)
[ss,totbnd,hsv] = imp2ss(imp,tol)

```

\section*{Description}

The function imp2ss produces an approximate state-space realization of a given impulse response
```

imp=mksys(y,t,nu,ny,'imp');

```
using the Hankel SVD method proposed by S. Kung [2]. A continuous-time realization is computed via the inverse Tustin transform (using bilin) if \(t\) is positive; otherwise a discrete-time realization is returned. In the SISO case the variable \(y\) is the impulse response vector; in the MIMO case \(y\) is an \(N+1\)-column matrix containing \(N+1\) time samples of the matrix-valued impulse response \(H_{0}, \ldots, H_{N}\) of an nu-input, ny-output system stored row-wise:
\(y=\left[H_{0}(:)^{\prime} ; H_{2}(:)^{\prime} ; H_{3}(:)^{\prime} ; \ldots ; H_{N}(:)^{\prime}\right.\)
The variable tol bounds the \(H_{\infty}\) norm of the error between the approximate realization ( \(a, b, c, d\) ) and an exact realization of \(y\); the order, say \(n\), of the realization \((a, b, c, d\) ) is determined by the infinity norm error bound specified by the input variable tol. The inputs ts, nu, ny, and tol are optional. If omitted, they default to the values ts \(=0\), nu \(=1\), ny \(=\left(\right.\) number of rows of \(y\) )/nu, tol \(=0.01 \bar{\sigma}_{1}\). The output \(h s v=\left[\bar{\sigma}_{1}, \bar{\sigma}_{2}, \ldots\right]\) returns the singular values (arranged in descending order of magnitude) of the Hankel matrix:
\[
\Gamma=\left[\begin{array}{ccccc}
H_{1} & H_{2} & H_{3} & \ldots & H_{N} \\
H_{2} & H_{3} & H_{4} & \ldots & 0 \\
H_{3} & H_{4} & H_{5} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
H_{N} & 0 & \ldots & \ldots & 0 s
\end{array}\right]
\]

Denoting by \(G_{N}\) a high-order exact realization of \(y\), the low-order approximate model \(G\) enjoys the \(H_{\infty}\) norm bound
\[
\left\|G-G_{N}\right\|_{\infty} \leq \text { totbnd }
\]
where
\[
\text { totbnd }=2 \sum_{i=n+1}^{N} \bar{\sigma}_{i} .
\]

\section*{More About}

\section*{Algorithms}

The realization ( \(a, b, c, d\) ) is computed using the Hankel SVD procedure proposed by Kung [2] as a method for approximately implementing the classical Hankel factorization realization algorithm. Kung's SVD realization procedure was subsequently shown to be equivalent to doing balanced truncation (balmr) on an exact state-space realization of the finite impulse response \(\{y(1), \ldots y(N)\}[3]\). The infinity norm error bound for discrete balanced truncation was later derived by Al-Saggaf and Franklin [1]. The algorithm is as follows:

1 Form the Hankel matrix \(\Gamma\) from the data \(y\).
2 Perform SVD on the Hankel matrix
\[
\Gamma=U \Sigma V^{*}=\left[U_{1} U_{2}\right]\left[\begin{array}{cc}
\Sigma_{1} & 0 \\
0 & \Sigma_{2}
\end{array}\right]\left[\begin{array}{c}
V *_{1} \\
V{ }_{2}
\end{array}\right]=U_{1} \Sigma_{1} V_{1}^{*}
\]
where \(\Sigma_{1}\) has dimension \(n \times n\) and the entries of \(\Sigma_{2}\) are nearly zero. \(U_{1}\) and \(V_{1}\) have \(n y\) and \(n u\) columns, respectively.

3 Partition the matrices \(U_{1}\) and \(V_{1}\) into three matrix blocks:
\(U 1=\left[\begin{array}{l}U_{11} \\ U_{12} \\ U_{13}\end{array}\right]\left[\begin{array}{c}V_{11} \\ V_{12} \\ V_{13}\end{array}\right]\)
where \(U_{11}, U_{13} \in C^{n y \times n}\) and \(V_{11}, V_{13} \in C^{n u \times n}\).
4 A discrete state-space realization is computed as
\[
\begin{aligned}
& A=\Sigma_{1}^{-\frac{1}{2}} \bar{U} \Sigma_{1}^{-\frac{1}{2}} \\
& B=\Sigma_{1}^{-\frac{1}{2}} V^{*} 11 \\
& C=U_{11} \Sigma_{1}^{-\frac{1}{2}} \\
& D=H_{0}
\end{aligned}
\]
where
\[
\bar{U}=\left[\begin{array}{l}
U_{11} \\
U_{12}
\end{array}\right]^{\prime}\left[\begin{array}{l}
U_{12} \\
U_{13}
\end{array}\right]
\]

5 If the sample time \(t\) is greater than zero, then the realization is converted to continuous time via the inverse of the Tustin transform
\[
s=\frac{2}{t} \frac{z-1}{z+1} .
\]

Otherwise, this step is omitted and the discrete-time realization calculated in Step 4 is returned.

\section*{References}
[1] Al-Saggaf, U.M., and G.F. Franklin, "An Error Bound for a Discrete Reduced Order Model of a Linear Multivariable System," IEEE Trans. on Autom. Contr., AC-32, 1987, p. 815-819.
[2] Kung, S.Y., "A New Identification and Model Reduction Algorithm via Singular Value Decompositions," Proc. Twelfth Asilomar Conf. on Circuits, Systems and Computers, November 6-8, 1978, p. 705-714.
[3] Silverman, L.M., and M. Bettayeb, "Optimal Approximation of Linear Systems," Proc. American Control Conf., San Francisco, CA, 1980.

\section*{ispsys}

True for parameter-dependent systems

\section*{Syntax}
bool = ispsys(sys)

\section*{Description}
bool = ispsys(sys) returns 1 if sys is a polytopic or parameter-dependent system.

\author{
See Also \\ psys | psinfo
}

\section*{isuncertain}

Check whether argument is uncertain class type

\section*{Syntax}
\(B=\) isuncertain(A)

\section*{Description}

Returns true if input argument is uncertain, false otherwise. Uncertain classes are umat, ufrd, uss, ureal, ultidyn, ucomplex, ucomplexm, and udyn.

\section*{Examples}

In this example, you verify the correct operation of isuncertain on double, ureal, ss, and uss objects.
```

isuncertain(rand(3,4))
ans =
0
isuncertain(ureal('p',4))
ans =
1
isuncertain(rss(4,3,2))
ans =
0
isuncertain(rss(4,3,2)*[ureal('p1',4) 6;0 1])
ans =
1

```

\section*{Limitations}
isuncertain only checks the class of the input argument, and does not actually verify that the input argument is truly uncertain. Create a umat by lifting a constant (i.e., notuncertain) matrix to the umat class.
```

A = umat([2 3;4 5;6 7]);

```

Note that although \(A\) is in class umat, it is not actually uncertain. Nevertheless, based on class, the result of isuncertain \((A)\) is true.
```

isuncertain(A)
ans =
1

```

The result of simplify (A) is a double, and hence not uncertain.
isuncertain(simplify(A))
ans =

0

\section*{Iftdata}

Decompose uncertain objects into fixed normalized and fixed uncertain parts

\section*{Syntax}
```

[M,Delta] = lftdata(A);
[M,Delta] = lftdata(A,List);
[M,Delta,Blkstruct] = lftdata(A);
[M,Delta,Blkstruct,Normunc] = lftdata(A);

```

\section*{Description}
lftdata decomposes an uncertain object into a fixed certain part and a normalized uncertain part. lftdata can also partially decompose an uncertain object into an uncertain part and a normalized uncertain part. Uncertain objects (umat, ufrd, uss) are represented as certain (i.e., not-uncertain) objects in feedback with block-diagonal concatenations of uncertain elements.
[M,Delta] = lftdata(A) separates the uncertain object \(A\) into a certain object \(M\) and a normalized uncertain matrix Delta such that \(A\) is equal to lft (Delta, M), as shown below.


If \(A\) is a umat, then \(M\) will be double; if \(A\) is a uss, then \(M\) will be ss; if \(A\) is a ufrd, then \(M\) will be frd. In all cases, Delta is a umat.
[M,Delta] = lftdata(A,List) separates the uncertain object A into an uncertain object \(M\), in feedback with a normalized uncertain matrix Delta. List is a cell (or char)
array of names of uncertain elements of A that make up Delta. All other uncertainty in A remains in \(M\).
lftdata(A,fieldnames(A.Uncertainty)) is the same as lftdata(A).
[M,DELTA, BLKSTRUCT] = lftdata(A) returns an \(N\)-by- 1 structure array BLKSTRUCT, where BLKSTRUCT (i) describes the i-th normalized uncertain element. This uncertainty description can be passed directly to the low-level structured singular value analysis function mussv.
[M,DELTA,BLKSTRUCT,NORMUNC] = lftdata(A) returns the cell array NORMUNC of normalized uncertain elements. Each normalized element has the string 'Normalized ' appended to its original name to avoid confusion. Note that lft(blkdiag (NORMUNC \{: \(\}\) ), M) is equivalent to \(A\).

\section*{Examples}

Create an uncertain matrix A with 3 uncertain parameters p1, p2 and p3. You can decompose \(A\) into its certain, \(M\), and normalized uncertain parts, Delta.
```

p1 = ureal('p1',-3,'perc',40);
p2 = ucomplex('p2',2);
A = [p1 p1+p2;1 p2];
[M,Delta] = lftdata(A);

```

You can inspect the difference between the original uncertain matrix, A, and the result formed by combining the two results from the decomposition.
```

simplify(A-lft(Delta,M))
ans =
0
0
M
M =

0	0	1.0954	1.0954
0	0	0	1.0000
1.0954	1.0000	-3.0000	-1.0000
0	1.0000	1.0000	2.0000

```

You can check the worst-case norm of the uncertain part using wcnorm. Compare samples of the uncertain part A with the uncertain matrix A.
```

wcn = wcnorm(Delta)
wcn =
lbound: 1.0000
ubound: 1.0001
usample(Delta,5)
ans(:,:,1) =
0.8012
0
0 0.2499 + 0.6946i
ans(:,:,2) =
0.4919
0
0 0.2863+0.6033i
ans(:,:,3) =
-0.1040
0
0 0.7322 - 0.3752i
ans(:,:,4) =
0.8296
0
ans(:,:,5) =
0.6886
0 0.0838 + 0.3562i

```

\section*{Uncertain Systems}

Create an uncertain matrix A with 2 uncertain real parameters v1 and v2 and create an uncertain system \(G\) using \(A\) as the dynamic matrix and simple matrices for the input and output.
```

A = [ureal('p1',-3,'perc',40) 1;1 ureal('p2',-2)];
sys = ss(A,[1;0],[0 1],0);
sys.InputGroup.ActualIn = 1;
sys.OutputGroup.ActualOut = 1;

```

You can decompose \(G\) into a certain system, Msys, and a normalized uncertain matrix, Delta. You can see from Msys that it is certain and that the input and output groups have been adjusted.
```

[Msys,Delta] = lftdata(sys);
Msys
a =

	x1	x2
x1	-3	1
x2	1	-2

```
\(\mathrm{b}=\)
\begin{tabular}{rrrr} 
& u 1 & u 2 & u 3 \\
x 1 & 1.095 & 0 & 1 \\
x2 & 0 & 1 & 0
\end{tabular}

C =
\begin{tabular}{lrr} 
& \(x 1\) & \(x 2\) \\
y1 & 1.095 & 0 \\
y2 & 0 & 1 \\
y3 & 0 & 1
\end{tabular}
d \(=\)
u1 u2 u3
y1 \(0 \quad 0 \quad 0\)
y2 000
y3 000
Input groups:
Name Channels
ActualIn 3
p1_NC 1
p2_NC 2
Output groups:
Name Channels
Actualout 3
p1_NC 1
p2_NC 2
Continuous-time model.
You can compute the norm on samples of the difference between the original uncertain matrix and the result formed by combining Msys and Delta.
```

norm(usample(sys-lft(Delta,Msys),'p1',4,'p2',3),'inf')
ans =

0	0	0
0	0	0
0	0	0
0	0	0

```

\section*{Partial Decomposition}

Create an uncertain matrix A and derive an uncertain matrix B using an implicit-toexplicit conversion, imp2exp. Note that B has 2 uncertain parameters R and K. You can decompose B into certain, M, and normalized uncertain parts, Delta.
```

R = ureal('R',1,'Percentage',[-10 40]);
K = ureal('K',2e-3,'Percentage',[-30 30]);
A = [1 -R 0 -K;0 -K 1 0];
Yidx = [1 3];
Uidx = [4 2];
B = imp2exp(A,Yidx,Uidx);
[M,Delta] = lftdata(B);

```

The same operation can be performed by defining the uncertain parameters, K and R , to be extracted.
```

[MK,DeltaR] = lftdata(B,'R');
MK
UMAT: 3 Rows, 3 Columns
K: real, nominal = 0.002, variability = [-30 30]%, 2 occurrences
[MR,DeltaK] = lftdata(B,'K');
MR
UMAT: 4 Rows, 4 Columns
R: real, nominal = 1, variability = [-10 40]%, 1 occurrence
simplify(B-lft(Delta,M))
ans =
0
0
simplify(B-lft(DeltaR,MK))
ans =
0
0
simplify(B-lft(DeltaK,MR))
ans =
0
0

```

Sample and inspect the uncertain part as well as the difference between the original uncertain matrix and the sampled matrix. You can see the result formed by combining the two results from the decomposition.
```

[Mall,Deltaall] = lftdata(B,{'K';'R'});

```
\begin{tabular}{ccccc}
\multicolumn{6}{c}{ simplify (Mall) - } \\
ans \(=\) \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{tabular}

\section*{See Also}
lft | ssdata

\section*{Imiedit}

Specify or display systems of LMIs as MATLAB expressions

\section*{Syntax}
lmiedit

\section*{Description}
lmiedit is a graphical user interface for the symbolic specification of LMI problems. Typing lmiedit calls up a window with two editable text areas and various buttons. To specify an LMI system,

1 Give it a name (top of the window).
2 Declare each matrix variable (name and structure) in the upper half of the window. The structure is characterized by its type ( S for symmetric block diagonal, R for unstructured, and \(G\) for other structures) and by an additional structure matrix similar to the second input argument of Imivar. Please use one line per matrix variable in the text editing areas.
3 Specify the LMIs as MATLAB expressions in the lower half of the window. An LMI can stretch over several lines. However, do not specify more than one LMI per line.

Once the LMI system is fully specified, you can perform the following operations by pressing the corresponding button:
- Visualize the sequence of lmivar/lmiterm commands needed to describe this LMI system (view commands buttons)
- Conversely, display the symbolic expression of the LMI system produced by a particular sequence of lmivar/lmiterm commands (click the describe... buttons)
- Save the symbolic description of the LMI system as a MATLAB string (save button). This description can be reloaded later on by pressing the load button
- Read a sequence of lmivar/lmiterm commands from a file (read button). The matrix expression of the LMI system specified by these commands is then displayed by clicking on describe the LMIs...
- Write in a file the sequence of lmivar/lmiterm commands needed to specify a particular LMI system (write button)
- Generate the internal representation of the LMI system by pressing create. The result is written in a MATLAB variable with the same name as the LMI system

\section*{More About}

\section*{Tips}

Editable text areas have built-in scrolling capabilities. To activate the scroll mode, click in the text area, maintain the mouse button down, and move the mouse up or down. The scroll mode is only active when all visible lines have been used.

\section*{See Also}
lmivar | lmiterm | newlmi | lmiinfo

\section*{Imiinfo}

Information about variables and term content of LMIs

\section*{Syntax}
lmiinfo

\section*{Description}
lmiinfo provides qualitative information about the system of LMIs lmisys. This includes the type and structure of the matrix variables, the number of diagonal blocks in the inner factors, and the term content of each block.
lmiinfo is an interactive facility where the user seeks specific pieces of information.
General LMIs are displayed as
```

N' * L(x) * N < M' * R(x) * M

```
where \(N, M\) denote the outer factors and \(L, R\) the left and right inner factors. If the outer factors are missing, the LMI is simply written as
```

L(x) < R(x)

```

If its right side is zero, it is displayed as
\(N^{\prime}\) * \(L(x)\) * \(N<0\)
Information on the block structure and term content of \(L(x)\) and \(R(x)\) is also available. The term content of a block is symbolically displayed as
```

C1 + A1*X2*B1 + B1'*X2*A1' + a2*X1 + x3*Q1

```
with the following conventions:
- X1, X2, x3 denote the problem variables. Upper-case X indicates matrix variables while lower-case \(x\) indicates scalar variables. The labels \(1,2,3\) refer to the first, second, and third matrix variable in the order of declaration.
- Cj refers to constant terms. Special cases are I and -I (I = identity matrix).
- \(\mathrm{Aj}, \mathrm{Bj}\) denote the left and right coefficients of variable terms. Lower-case letters such as a2 indicate a scalar coefficient.
- Qj is used exclusively with scalar variables as in \(\mathrm{x} 3 *\) Q1.

The index \(j\) in \(A j, B j, C j, ~ Q j\) is a dummy label. Hence \(C 1\) may appear in several blocks or several LMIs without implying any connection between the corresponding constant terms. Exceptions to this rule are the notations A1*X2*A1' and A1*X2*B1 + B1'*X2'*A1' which indicate symmetric terms and symmetric pairs in diagonal blocks.

\section*{Examples}

Consider the LMI
\[
0\left(\begin{array}{cc}
-2 X+A^{T} Y B+B^{T} Y^{T} A+I & X C \\
C^{T} X & -z I
\end{array}\right)
\]
where the matrix variables are \(X\) of Type \(1, Y\) of Type 2, and \(z\) scalar. If this LMI is described in lmis, information about \(X\) and the LMI block structure can be obtained as follows:
```

lmiinfo(lmis)

```
LMI ORACLE

This is a system of 1 LMI with 3 variable matrices
Do you want information on (v) matrix variables
(1) LMIs
(q) quit
?> V
Which variable matrix (enter its index \(k\) between 1 and 3) ? 1
X1 is a \(2 \times 2\) symmetric block diagonal matrix its (1,1)-block is a full block of size 2

This is a system of 1 LMI with 3 variable matrices
```

Do you want information on
(v) matrix variables
(l) LMIs
(q) quit
?> l
Which LMI (enter its number k between 1 and 1) ? 1
This LMI is of the form
0<R(x)
where the inner factor(s) has 2 diagonal block(s)
Do you want info on the right inner factor ?

```
(w) whole factor
(b) only one block
(o) other LMI
(t) back to top level
```

?> w
Info about the right inner factor
block (1,1) : I + a1*X1 + A2*X2*B2 + B2'*X2'*A2'
block (2,1) : A3*X1
block (2,2) : x3*A4

```
(w) whole factor
(b) only one block
(o) other LMI
(t) back to top level
```

This is a system of 1 LMI with 3 variable matrices
Do you want information on

```
(v) matrix variables
(1) LMIs
(q) quit
```

?> q
It has been a pleasure serving you!

```

Note that the prompt symbol is ?> and that answers are either indices or letters. All blocks can be displayed at once with option (w), or you can prompt for specific blocks with option (b).

\section*{More About}

\section*{Tips}
lmiinfo does not provide access to the numerical value of LMI coefficients.

\author{
See Also \\ decinfo | lminbr | matnbr | decnbr
}

\section*{Iminbr}

Return number of LMIs in LMI system

\section*{Syntax}
k = lminbr(lmisys)

\section*{Description}
lminbr returns the number k of linear matrix inequalities in the LMI problem described in lmisys.

\author{
See Also \\ lmiinfo | matnbr
}

\section*{Imireg}

Specify LMI regions for pole placement

\section*{Syntax}
```

region = lmireg
region = lmireg(reg1,reg2,...)

```

\section*{Description}

Imireg is an interactive facility to specify the LMI regions involved in multi-objective \(H_{\infty}\) synthesis with pole placement constraints (see msfsyn). Recall that an LMI region is any convex subset \(D\) of the complex plane that can be characterized by an LMI in \(z\) and \(z^{-}\), i.e.,
\[
D=\left\{z \in C: L+M z+M^{T} \bar{z}<0\right\}
\]
for some fixed real matrices \(M\) and \(L=L^{T}\). This class of regions encompasses half planes, strips, conic sectors, disks, ellipses, and any intersection of the above.

Calling lmireg without argument starts an interactive query/answer session where you can specify the region of your choice. The matrix region \(=[L, M]\) is returned upon termination. This matrix description of the LMI region can be passed directly to msfsyn for synthesis purposes.

The function lmireg can also be used to intersect previously defined LMI regions reg1, reg2, . . . The output region is then the \([L, M]\) description of the intersection of these regions.

\section*{See Also}
msfsyn

\section*{Imiterm}

Specify term content of LMIs

\section*{Syntax}
lmiterm(termID, A, B,flag)

\section*{Description}

Imiterm specifies the term content of an LMI one term at a time. Recall that LMI term refers to the elementary additive terms involved in the block-matrix expression of the LMI. Before using lmiterm, the LMI description must be initialized with setlmis and the matrix variables must be declared with lmivar. Each lmiterm command adds one extra term to the LMI system currently described.

LMI terms are one of the following entities:
- outer factors
- constant terms (fixed matrices)
- variable terms \(A X B\) or \(A X^{T} B\) where \(X\) is a matrix variable and \(A\) and \(B\) are given matrices called the term coefficients.

When describing an LMI with several blocks, remember to specify only the terms in the blocks on or below the diagonal (or equivalently, only the terms in blocks on or above the diagonal). For instance, specify the blocks (1,1), (2,1), and (2,2) in a two-block LMI.

In the calling of lmiterm, termID is a four-entry vector of integers specifying the term location and the matrix variable involved.
\[
\operatorname{termID}(1)=\left\{\begin{array}{l}
+\mathrm{p} \\
-\mathrm{p}
\end{array}\right.
\]
where positive p is for terms on the left-side of the \(p\)-th LMI and negative p is for terms on the right-side of the \(p\)-th LMI.

Recall that, by convention, the left side always refers to the smaller side of the LMI. The index \(p\) is relative to the order of declaration and corresponds to the identifier returned by newlmi.
```

$\operatorname{termID}(2: 3)=\left\{\begin{array}{l}{[0,0] \text { for outer factors }} \\ {[i, j] \text { for terms in the }(i, j) \text {-th block of the left or right inner factor }}\end{array}\right.$

```
\(\operatorname{termID}(4)=\left\{\begin{array}{l}0 \text { for outer factors } \\ x \text { for variable terms } A X B \\ -x \text { for variable terms } A X^{T} B\end{array}\right.\)
where x is the identifier of the matrix variable X as returned by lmivar.
The arguments \(A\) and \(B\) contain the numerical data and are set according to:
\begin{tabular}{|l|l|l|}
\hline Type of Term & A & B \\
\hline outer factor \(N\) & matrix value of \(N\) & omit \\
\hline constant term C & matrix value of \(C\) & omit \\
\hline variable term & matrix value of \(A\) & matrix value of \(B\) \\
\(A X B\) or \(A X^{T} B\) & \((1\) if \(A\) is absent \()\) & \((1\) if \(B\) is absent \()\) \\
\hline
\end{tabular}

Note that identity outer factors and zero constant terms need not be specified.
The extra argument flag is optional and concerns only conjugated expressions of the form
\((A X B)+\left(A X B^{T}\right)=A X B+B^{T} X^{(T)} A^{T}\)
in diagonal blocks. Setting flag = 's' allows you to specify such expressions with a single lmiterm command. For instance,
lmiterm([ \(\left.\left.\begin{array}{llll}1 & 1 & 1 & X\end{array}\right], A, 1, S^{\prime}\right)\)
adds the symmetrized expression \(A X+X^{T} A^{T}\) to the \((1,1)\) block of the first LMI and summarizes the two commands
```

lmiterm([[1 1 1 1 X],A,1)
lmiterm([[1 1 1 1 -X],1,A')

```

Aside from being convenient, this shortcut also results in a more efficient representation of the LMI.

\section*{Examples}

Consider the LMI
\[
\left(\begin{array}{cc}
2 A X_{2} A^{T}-x_{3} E+D D^{T} & B^{T} X_{1} \\
X_{1}^{T} B & -I
\end{array}\right)<M^{T}\left(\begin{array}{cc}
C X_{1} C^{T}+C X_{1}^{T} C^{T} & 0 \\
0 & -f X_{2}
\end{array}\right) M
\]
where \(X_{1}, X_{2}\) are matrix variables of Types 2 and 1 , respectively, and \(x_{3}\) is a scalar variable (Type 1).

After initializing the LMI description with setlmis and declaring the matrix variables with lmivar, the terms on the left side of this LMI are specified by:
```

lmiterm([[1 1 1 1 X2],2*A,A') % 2*A*X2*A'
lmiterm([1 1 1 1 1 x3],-1,E) % -x3*E
lmiterm([$$
\begin{array}{llll}{1}&{1}&{1}&{0}\end{array}
$$],D*\mp@subsup{D}{}{\prime}) % D*D'
lmiterm([11 2 1 1-X1],1,B) % X1'*B
lmiterm([11 2 2 0],-1) % -I

```

Here X1, X2, X3 should be the variable identifiers returned by lmivar.
Similarly, the term content of the right side is specified by:
```

lmiterm([-1 0 0 0],M) % outer factor M
lmiterm([[-1 [11 1 X1],C,C','s') % C*X1*C'+C*X1'*C'
lmiterm([-1 1 2 2 X2],-f,1) % -f*X2

```

Note that \(C X_{1} C^{T}+C X_{1}{ }^{T} C^{T}\) is specified by a single lmiterm command with the flag 's ' to ensure proper symmetrization.

\author{
See Also \\ setlmis | lmivar | getlmis | lmiedit | newlmi
}

\section*{Imivar}

Specify matrix variables in LMI problem

\section*{Syntax}
```

X = lmivar(type,struct)
[X,n,sX] = lmivar(type,struct)

```

\section*{Description}
lmivar defines a new matrix variable \(X\) in the LMI system currently described. The optional output X is an identifier that can be used for subsequent reference to this new variable.

The first argument type selects among available types of variables and the second argument struct gives further information on the structure of \(X\) depending on its type. Available variable types include:
type=1: Symmetric matrices with a block-diagonal structure. Each diagonal block is either full (arbitrary symmetric matrix), scalar (a multiple of the identity matrix), or identically zero.

If \(X\) has \(R\) diagonal blocks, struct is an \(R\)-by- 2 matrix where
- struct \((r, 1)\) is the size of the \(r\)-th block
- struct \((r, 2)\) is the type of the \(r\)-th block ( 1 for full, 0 for scalar, -1 for zero block).
type=2: Full \(m\)-by- \(n\) rectangular matrix. Set struct \(=[m, n]\) in this case.
type=3: Other structures. With Type 3, each entry of \(X\) is specified as zero or \(\pm x\) where \(x_{n}\) is the \(n\)-th decision variable.

Accordingly, struct is a matrix of the same dimensions as \(X\) such that
- struct \((i, j)=0\) if \(X(i, j)\) is a hard zero
- \(\operatorname{struct}(\mathrm{i}, \mathrm{j})=\mathrm{n}\) if \(X(i, j)=x_{n}\)
- \(\operatorname{struct}(\mathrm{i}, \mathrm{j})=-\mathrm{n}\) if \(X(i, j)=-x_{n}\)

Sophisticated matrix variable structures can be defined with Type 3. To specify a variable \(X\) of Type 3, first identify how many free independent entries are involved in \(X\). These constitute the set of decision variables associated with \(X\). If the problem already involves \(n\) decision variables, label the new free variables as \(x_{n+1}, \ldots, x_{n+p}\). The structure of \(X\) is then defined in terms of \(x_{n+1}, \ldots, x_{n+p}\) as indicated above. To help specify matrix variables of Type 3, lmivar optionally returns two extra outputs: (1) the total number n of scalar decision variables used so far and (2) a matrix sX showing the entry-wise dependence of \(X\) on the decision variables \(x_{1}, \ldots, x_{n}\).

\section*{Examples}

\section*{Example 1}

Consider an LMI system with three matrix variables \(X_{1}, X_{2}, X_{3}\) such that
- \(X_{1}\) is a 3-by- 3 symmetric matrix (unstructured),
- \(X_{2}\) is a 2-by-4 rectangular matrix (unstructured),
- \(X_{3}=\)
\[
\left(\begin{array}{ccc}
\Delta & 0 & 0 \\
0 & \delta_{1} & 0 \\
0 & 0 & \delta_{2} I_{2}
\end{array}\right)
\]
where \(\Delta\) is an arbitrary 5 -by- 5 symmetric matrix, \(\delta_{1}\) and \(\delta_{2}\) are scalars, and \(I_{2}\) denotes the identity matrix of size 2 .

These three variables are defined by
```

setlmis([])
X1 = lmivar(1,[3 1]) % Type 1
X2 = lmivar(2,[2 4]) % Type 2 of dim. 2x4
X3 = lmivar(1,[5 1;1 0;2 0]) % Type 1

```

The last command defines \(X_{3}\) as a variable of Type 1 with one full block of size 5 and two scalar blocks of sizes 1 and 2 , respectively.

\section*{Example 2}

Combined with the extra outputs n and sX of lmivar, Type 3 allows you to specify fairly complex matrix variable structures. For instance, consider a matrix variable \(X\) with structure
\[
X=\left(\begin{array}{cc}
X_{1} & 0 \\
0 & X_{2}
\end{array}\right)
\]
where \(X_{1}\) and \(X_{2}\) are 2-by-3 and 3-by-2 rectangular matrices, respectively. You can specify this structure as follows:

1 Define the rectangular variables \(X_{1}\) and \(X_{2}\) by
```

setlmis([])
[X1,n,sX1] = lmivar(2,[2 3])
[X2,n,sX2] = lmivar(2,[3 2])

```

The outputs sX1 and sX2 give the decision variable content of \(X_{1}\) and \(X_{2}\) :
sX1
sX1 =
\(1 \quad 2 \quad 3\)
\(4 \quad 5 \quad 6\)
sX2
sX2 =
\(7 \quad 8\)
\(9 \quad 10\)
1112
For instance, \(s X 2(1,1)=7\) means that the \((1,1)\) entry of \(X_{2}\) is the seventh decision variable.

2 Use Type 3 to specify the matrix variable \(X\) and define its structure in terms of those of \(X_{1}\) and \(X_{2}\) :
[ \(\mathrm{X}, \mathrm{n}, \mathrm{sX}]=\) lmivar(3,[sX1,zeros(2);zeros(3),sX2])
The resulting variable X has the prescribed structure as confirmed by
```

sX
sX =
1 2 3 0 0
4}505060
0
0
0 0 0 11 12

```

\section*{See Also}
setlmis | lmiterm | getlmis | lmiedit | skewdec | delmvar | setmvar

\section*{loopmargin}

Stability margin analysis of LTI and Simulink feedback loops

\section*{Syntax}
```

[cm,dm,mm] = loopmargin(L)
[m1,m2] = loopmargin(L,MFLAG)
[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(P,C)
[m1,m2,m3] = loopmargin(P,C,MFLAG)

```

\section*{Description}
[cm, dm, mm] = loopmargin(L) analyzes the multivariable feedback loop consisting of the loop transfer matrix L (size \(N\)-by- \(N\) ) in negative feedback with an \(N\)-by- \(N\) identity matrix.
cm, or classical gain and phase margins, is an \(N\)-by- 1 structure corresponding to loop-at-a-time gain and phase margins for each channel (See allmargin for details on the fields of cm .)
dm is an \(N\)-by- 1 structure corresponding to loop-at-a-time disk gain and phase margins for each channel. The disk margin for the i-th feedback channel defines a circular region centered on the negative real axis at the average GainMargin (GM), e.g., \(\left(\mathrm{GM}_{\text {low }}+\mathrm{GM}_{\text {high }}\right) / 2\), such that \(L(i, i)\) does not enter that region. Gain and phase disk margin bounds are derived from the radius of the circle, calculated based on the balanced sensitivity function.
mm , the multiloop disk margin, is a structure. mm describes how much independent and concurrent gain and phase variation can occur independently in each feedback channel while maintaining stability of the closed-loop system. Note that mm is a single structure, independent of the number of channels. This is because variations in all channels are considered simultaneously. As in the case for disk margin, the guaranteed bounds are calculated based on a balanced sensitivity function.

If \(L\) is a ss/tf/zpk object, the frequency range and number of frequency points used to calculate dm and mm margins are chosen automatically.

Output arguments can be limited to only those requested using an optional character string argument. [m1, m2] = loopmargin(L,'m, c') returns the multi-loop diskmargin (' \(m\) ') in \(m 1\), and the classical margins (' \(c\) ') in \(m 2\). Use ' \(d\) ' to specify the disk margin. This optional second argument may be any combination, in any order, of the 3 characters 'c', 'd' and 'm'.
[cmi,dmi,mmi, cmo,dmo,mmo,mmio] = ( \(\mathrm{P}, \mathrm{C}\) ) analyzes the multivariable feedback loop consisting of the controller C in negative feedback with the plant, P . C should only be the compensator in the feedback path, without reference channels, if it is a 2 -Dof architecture. That is, if the closed-loop system has a 2-Dof architecture the reference channel of the controller should be eliminated, resulting in a 1-Dof architecture, as shown.


2-dof architecture


1-dof architecture
\(\mathrm{cmi}, \mathrm{dmi}\) and mmi structures correspond to the classical loop-at-a-time gain and phase margins, disk margins and multiloop channel margins at the plant input respectively. The structures cmo, dmo and mmo have the same fields as described for cmi, dmi and mmi though they correspond to the plant outputs. mmio, or multi-input/multi-output margins, is a structure corresponding to simultaneous, independent, variations in all the individual input and output channels of the feedback loops. mmio has the same fields as mmi and mmo.

If the closed-loop system is an ss/tf/zpk, the frequency range and number of points used to calculate \(\mathrm{cm}, \mathrm{dm}\) and mm margins are chosen automatically.

Output arguments can be limited to only those requested using an optional character string argument. [m1, m2, m3] = (L,'mo, ci, mm') returns the multi-loop diskmargin at the plant output (' mo ') in m 1 , the classical margins at the plant input ('ci') in m2, and the disk margins for simultaneous, independent variations in all input and output channels (' mm ') in m 3 . This optional third argument may be any comnination, in any order, of the 7 character pairs 'ci', 'di', 'mi', 'co', 'do, 'mo', and 'mm'.

\section*{Usage with Simulink}
[cm, dm, mm] = loopmargin(Model,Blocks,Ports) does a multi-loop stability margin analysis using Simulink Control Design software. Model specifies the name of the Simulink diagram for analysis. The margin analysis points are defined at the output ports (Ports) of blocks (Blocks) within the model. Blocks is a cell array of full block path names and Ports is a vector of the same dimension as Blocks. If all Blocks have a single output port, then Ports would be a vector of ones with the same length as Blocks.

Three types of stability margins are computed: loop-at-a-time classical gain and phase margins (cm), loop-at-a-time disk margins (dm) and a multi-loop disk margin (mm).
[cm, dm, mm] = loopmargin(Model, Blocks, Ports, OP) uses the operating point object OP to create linearized systems from the Simulink Model.
[cm,dm,mm,info] = loopmargin(Model,Blocks,Ports,OP) returns info in addition to the margins. info is a structure with fields OperatingPoint, LinearizationIO and SignalNames corresponding to the analysis.

Margin output arguments can be limited to only those requested using an optional character string argument. INFO is always the last output. For example, [ \(\mathrm{mm}, \mathrm{cm}\), info] = loopmargin(Model,Blocks,Ports,'m, c') returns the multi-loop diskmargin ('m') in mm, the classical margins ('c') in cm, and the info structure.

\section*{Basic Syntax}
[cm, dm, mm] = loopmargin(L) cm is calculated using the allmargin command and has the same fields as allmargin. The cm is a structure with the following fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline GMFrequency & All -180 deg crossover frequencies (in radians-per-second) \\
\hline GainMargin & \begin{tabular}{l} 
Corresponding gain margins (GM = 1/L where L is the gain at \\
crossover)
\end{tabular} \\
\hline PhaseMargin & Corresponding phase margins (in degrees) \\
\hline PMFrequency & All 0 dB crossover frequencies (in radians-per-second) \\
\hline DelayMargin & \begin{tabular}{l} 
Delay margins (in seconds for continuous-time systems, and \\
multiples of the sample time for discrete-time systems)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Stable & \begin{tabular}{l}
1 if nominal closed loop is stable, 0 otherwise. If \(L\) is a frd or ufrd \\
object, the Stable flag is set to NaN.
\end{tabular} \\
\hline
\end{tabular}
dm , or Disk Margin, is a structure with the following fields
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline GainMargin & \begin{tabular}{l} 
Smallest gain variation (GM) such that a disk centered at the point - \\
\((G M(1)+\) GM(2))/2 would just touch the loop transfer function
\end{tabular} \\
\hline PhaseMargin & \begin{tabular}{l} 
Smallest phase variation, in degrees, corresponding to the disk \\
described in the GainMargin field (degrees)
\end{tabular} \\
\hline Frequency & \begin{tabular}{l} 
Associated with GainMargin/PhaseMargin fields (in radians-per- \\
second)
\end{tabular} \\
\hline
\end{tabular}
mm is a structure with the following fields.
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline GainMargin & \begin{tabular}{l} 
Guaranteed bound on simultaneous, independent, gain variations \\
allowed in all plant channels
\end{tabular} \\
\hline PhaseMargin & \begin{tabular}{l} 
Guaranteed bound on simultaneous, independent, phase variations \\
allowed in all plant channels (degrees)
\end{tabular} \\
\hline Frequency & \begin{tabular}{l} 
Associated with GainMargin/PhaseMargin fields (in radians-per- \\
second)
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

\section*{MIMO Loop-at-a-Time Margins}

This example is designed to illustrate that loop-at-a-time margins (gain, phase, and/or distance to -1) can be inaccurate measures of multivariable robustness margins. You will see that margins of the individual loops can be very sensitive to small perturbations within other loops.

The nominal closed-loop system considered here is as follows

\(G\) and \(K\) are 2-by-2 multiinput/multioutput (MIMO) systems, defined as
\[
G=\frac{1}{s^{2}+\alpha^{2}}\left[\begin{array}{cc}
s-\alpha^{2} & \alpha(s+1) \\
-\alpha(s+1) & s-\alpha^{2}
\end{array}\right], K=I_{2}
\]

Set \(\alpha:=10\), construct \(G\) in state-space form, and compute its frequency response.
```

a = [0 10;-10 0];
b = eye(2);
c = [1 8;-10 1];
d = zeros(2,2);
G = ss(a,b,c,d);
K = [1 -2;0 1];
[cmi,dmi,mmi,cmo,dmo,mmo,mmio] = loopmargin(G,K);

```

First consider the margins at the input to the plant. The first input channel has infinite gain margin and 90 degrees of phase margin based on the results from the allmargin command, cmi (1). The disk margin analysis, dmi, of the first channel provides similar results.
```

cmi(1)
ans =
GMFrequency: [1x0 double]
GainMargin: [1x0 double]
PMFrequency: 21
PhaseMargin: 90
DMFrequency: 21
DelayMargin: 0.0748
Stable: 1
dmi(1)
ans =
GainMargin: [0 Inf]
PhaseMargin: [-90 90]

```

Frequency: 1.1168
The second input channel has a gain margin of 2.105 and infinite phase margin based on the single-loop analysis, cmi (2). The disk margin analysis, dmi (2), which allows for simultaneous gain and phase variations a loop-at-a-time results in maximum gain margin variations of 0.475 and 2.105 and phase margin variations of \(+/-39.18\) degs.
```

cmi(2)
ans =
GMFrequency: 0
GainMargin: 2.1053
PMFrequency: [1x0 double]
PhaseMargin: [1x0 double]
DMFrequency: [1x0 double]
DelayMargin: [1x0 double]
Stable: 1
dmi(2)
ans =
GainMargin: [0.4749 2.1056]
PhaseMargin: [-39.1912 39.1912]
Frequency: 0.0200

```

The multiple margin analysis of the plant inputs corresponds to allowing simultaneous, independent gain and phase margin variations in each channel. Allowing independent variation of the input channels further reduces the tolerance of the closed-loop system to variations at the input to the plant. The multivariable margin analysis, mmi, leads to a maximum allowable gain margin variation of 0.728 and 1.373 and phase margin variations of +/- 17.87 deg. Hence even though the first channel had infinite gain margin and 90 degrees of phase margin, allowing variation in both input channels leads to a factor of two reduction in the gain and phase margin.
```

mmi
mmi =
GainMargin: [0.7283 1.3730]
PhaseMargin: [-17.8659 17.8659]
Frequency: 9.5238e-004

```

The guaranteed region of phase and gain variations for the closed-loop system can be illustrated graphically. The disk margin analysis, dmi (2), indicates the closed-loop system will remain stable for simultaneous gain variations of 0.475 and \(2.105( \pm 6.465\) dB ) and phase margin variations of \(\pm 39.18 \mathrm{deg}\) in the second input channel. This is denoted by the region associated with the large ellipse in the following figure. The multivariable margin analysis at the input to the plant, mmi, indicates that the closed-
loop system will be stable for independent, simultaneous, gain margin variation up to 0.728 and \(1.373( \pm 2.753 \mathrm{~dB}\) ) and phase margin variations up to \(\pm 17.87 \mathrm{deg}\) (the dark ellipse region) in both input channels.


The output channels have single-loop margins of infinite gain and 90 deg phase variation. The output multivariable margin analysis, mmo, leads to a maximum allowable gain margin variation of 0.607 and 1.649 and phase margin variations of \(+/-27.53\) degs. Hence even though both output channels had infinite gain margin and 90 degrees of phase margin, simultaneous variations in both channels significantly reduce the margins at the plant outputs.
```

mmo
mmo =
GainMargin: [0.6065 1.6489]
PhaseMargin: [-27.5293 27.5293]
Frequency: 0.2287

```

The margins when all the input and output channels are allowed to vary independently are in the output mmio. For this system, this output shows that the allowable gain margin variations are 0.827 and 1.210 and allowable phase margin variations are +/10.84 deg .
```

mmio
mmio =
GainMargin: [0.8267 1.2097]
PhaseMargin: [-10.8402 10.8402]
Frequency: 0.2287

```

\section*{More About}

\section*{Algorithms}

Two well-known loop robustness measures are based on the sensitivity function \(S=(I-L)^{-}\) \({ }^{1}\) and the complementary sensitivity function \(T=L(I-L)^{-1}\) where \(L\) is the loop gain matrix associated with the input or output loops broken simultaneously. In the following figure, \(S\) is the transfer matrix from summing junction input \(u\) to summing junction output \(e\). \(T\) is the transfer matrix from \(u\) to \(y\). If signals \(e\) and \(y\) are summed, the transfer matrix from \(u\) to \(e+y\) is given by \((I+L) \cdot(I-L)^{-1}\), the balanced sensitivity function. It can be shown (Dailey, 1991, Blight, Daily and Gangass, 1994) that each broken-loop gain can be perturbed by the complex gain \((1+\Delta)(1-\Delta)\) where \(|\Delta|<1 / \mu(S+T)\) or \(|\Delta|<1 / \sigma_{\max }(S+T)\) at each frequency without causing instability at that frequency. The peak value of \(\mu(S+T)\) or \(\sigma_{\max }(S+T)\) gives a robustness guarantee for all frequencies, and for \(\mu(S+T)\) the guarantee is nonconservative (Blight, Daily and Gangass, 1994).

\[
\begin{array}{rlcll}
e & = & (I-L)^{-1} u & & S u \\
y & = & L(I-L)^{-1} u & = & T u \\
e+y & = & (I+L) \cdot(I-L)^{-1} u & = & (S+T) u
\end{array}
\]

This figure shows a comparison of a disk margin analysis with the classical notations of gain and phase margins.


The Nyquist plot is of the loop transfer function \(L(s)\)
\[
L(s)=\frac{\frac{s}{30}+1}{(s+1)\left(s^{2}+1.6 s+16\right)}
\]
- The Nyquist plot of \(L\) corresponds to the blue line.
- The unit disk corresponds to the dotted red line.
- GM and PM indicate the location of the classical gain and phase margins for the system \(L\).
- DGM and DPM correspond to the disk gain and phase margins. The disk margins provide a lower bound on classical gain and phase margins.
- The disk margin circle corresponds to the dashed black line. The disk margin corresponds to the largest disk centered at (GMD + 1/GMD)/2 that just touches the loop transfer function \(L\). This location is indicated by the red dot.

The disk margin and multiple channel margins calculation involve the balanced sensitivity function \(S+T\). For a given peak value of \(\mu(S+T)\), any simultaneous phase and gain variations applied to each loop independently will not destabilize the system if the perturbations remain inside the corresponding circle or disk. This corresponds to the disk margin calculation to find dmi and dmo.

Similarly, the multiple channel margins calculation involves the balanced sensitivity function \(S+T\). Instead of calculating \(\mu(S+T)\) a single loop at a time, all the channels are included in the analysis. A \(\mu\) - analysis problem is formulated with each channel perturbed by an independent, complex perturbation. The peak \(\mu(S+T)\) value guarantees that any simultaneous, independent phase and gain variations applied to each loop simultaneously will not destabilize the system if they remain inside the corresponding circle or disk of size \(\mu(S+T)\).

\section*{References}

Barrett, M.F., Conservatism with robustness tests for linear feedback control systems, Ph.D. Thesis, Control Science and Dynamical Systems, University of Minnesota, 1980.

Blight, J.D., R.L. Dailey, and D. Gangsass, "Practical control law design for aircraft using multivariable techniques," International Journal of Control, Vol. 59, No. 1, 1994, pp. 93-137.

Bates, D., and I. Postlethwaite, "Robust Multivariable Control of Aerospace Systems," Delft University Press, Delft, The Netherlands, ISBN: 90-407-2317-6, 2002.

\section*{See Also}
allmargin | mussv | bode | loopsens | robuststab | wcgain | wcsens |
wcmargin

\section*{loopsens}

Sensitivity functions of plant-controller feedback loop

\section*{Syntax}
loops = loopsens(P,C)

\section*{Description}
loops \(=\) loopsens \((\mathrm{P}, \mathrm{C})\) creates a struct, loops, whose fields contain the multivariable sensitivity, complementary and open-loop transfer functions. The closedloop system consists of the controller C in negative feedback with the plant P. C should only be the compensator in the feedback path, not any reference channels, if it is a 2 Dof controller as seen in the figure below. The plant and compensator \(P\) and \(C\) can be constant matrices, double, lti objects, frd/ss/tf/zpk, or uncertain objects umat/ ufrd/uss.


2-dof architecture


1-dof architecture

The loops returned variable is a structure with fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Poles & Closed-loop poles. NaN for frd/ufrd objects \\
\hline Stable & \begin{tabular}{l}
1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd \\
objects
\end{tabular} \\
\hline Si & Input-to-plant sensitivity function \\
\hline Ti & Input-to-plant complementary sensitivity function \\
\hline Li & Input-to-plant loop transfer function \\
\hline So & Output-to-plant sensitivity function \\
\hline To & Output-to-plant complementary sensitivity function \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Lo & Output-to-plant loop transfer function \\
\hline PSi & Plant times input-to-plant sensitivity function \\
\hline CSo & Compensator times output-to-plant sensitivity function \\
\hline
\end{tabular}

The multivariable closed-loop interconnection structure, shown below, defines the input/ output sensitivity, complementary sensitivity, and loop transfer functions.

\begin{tabular}{|l|l|}
\hline Description & Equation \\
\hline Input sensitivity \(\left(T F_{e 1 \leftarrow d 1}\right)\) & \((I+C P)^{-1}\) \\
\hline Input complementary sensitivity \(\left(T F_{e 2 \leftarrow d 1}\right)\) & \(C P(I+C P)^{-1}\) \\
\hline Output sensitivity \(\left(T F_{e 3 \leftarrow d 2}\right)\) & \((I+P C)^{-1}\) \\
\hline Output complementary sensitivity \(\left(-T F_{e 4 \leftarrow d 2}\right)\) & \(P C(I+P C)^{-1}\) \\
\hline Input loop transfer function & \(C P\) \\
\hline Output loop transfer function & \(P C\) \\
\hline
\end{tabular}

\section*{Examples}

\section*{Single Input, Single Output (SISO) Loop Sensitivities}

Consider PI controller for a dominantly 1st-order plant, with the closed-loop bandwidth of \(2.5 \mathrm{rads} / \mathrm{sec}\). Since the problem is SISO, all gains are the same at input and output.
```

gamma = 2; tau = 1.5; taufast = 0.1;
P = tf(gamma,[tau 1])*tf(1,[taufast 1]);
tauclp = 0.4;
xiclp = 0.8;
wnclp = 1/(tauclp*xiclp);
KP = (2*xiclp*wnclp*tau - 1)/gamma;
KI = wnclp^2*tau/gamma;
C = tf([KP KI],[1 0]);

```

Form the closed-loop (and open-loop) systems with loopsens, and plot Bode plots using the gains at the plant input.
loops = loopsens(P,C);
bode(loops.Si, 'r',loops.Ti,'b',loops.Li, 'g')

Bode Diagram


Finally, compare the open-loop plant gain to the closed-loop value of PSi.
```

bodemag(P,'r',loops.PSi,'b')

```

\section*{Bode Diagram}


\section*{Multi Input, Multi Output (MIMO) Loop Sensitivities}

Consider an integral controller for a constant-gain, 2 -input, 2 -output plant. For purposes of illustration, the controller is designed via inversion, with different bandwidths in each rotated channel.
```

P = ss([2 3;-1 1]);
BW = diag([2 5]);
[U,S,V] = svd(P.d); % get SVD of Plant Gain
Csvd = V*inv(S)*BW*tf(1,[1 0])*U'; % inversion based on SVD

```
```

loops = loopsens(P,Csvd);
bode(loops.So, 'g',loops.To, 'r.',logspace(-1,3,120))
title('Output Sensitivity (green), Output Complementary Sensitivity (red)');

```

Output Sensitivity (green), Output Complementary Sensitivity (red)


\footnotetext{
See Also
loopmargin | wcsens | robuststab | wcmargin
}

\section*{loopsyn}
\(H_{\infty}\) optimal controller synthesis for LTI plant

\section*{Syntax}
[ K, CL , GAM, INFO] =loopsyn ( \(\mathrm{G}, \mathrm{Gd}\) )
[ \(\mathrm{K}, \mathrm{CL}, \mathrm{GAM}, \mathrm{INFO}]=1\) oopsyn ( \(\mathrm{G}, \mathrm{Gd}\), RANGE )

\section*{Description}
loopsyn is an \(H_{\infty}\) optimal method for loopshaping control synthesis. It computes a stabilizing \(H_{\infty}\) controller \(K\) for plant \(G\) to shape the sigma plot of the loop transfer function \(G K\) to have desired loop shape \(G_{d}\) with accuracy \(\gamma=\) GAM in the sense that if \(\omega_{0}\) is the 0 db crossover frequency of the sigma plot of \(G_{d}(j \omega)\), then, roughly,
\[
\begin{aligned}
& \underline{\sigma}(G(j \omega) K(j \omega)) \geq \frac{1}{\gamma} \underline{\sigma}\left(G_{d}(j \omega)\right) \text { for all } \omega>\omega_{0} \\
& \underline{\sigma}(G(j \omega) K(j \omega)) \leq \gamma \underline{\sigma}\left(G_{d}(j \omega)\right) \text { for all } \omega>\omega_{0}
\end{aligned}
\]

The STRUCT array INFO returns additional design information, including a MIMO stable min-phase shaping pre-filter \(W\), the shaped plant \(G_{s}=G W\), the controller for the shaped plant \(K_{s}=W K\), as well as the frequency range \(\left\{\omega_{\min }, \omega_{\max }\right\}\) over which the loop shaping is achieved
\begin{tabular}{|l|l|}
\hline Input Argument & Description \\
\hline G & LTI plant \\
\hline Gd & Desired loop-shape (LTI model) \\
\hline RANGE & \begin{tabular}{l} 
(optional, default \(\{0\), Inf \(\}\) ) Desired frequency range for loop- \\
shaping, a 1 -by-2 cell array \(\left\{\omega_{\min }, \omega_{\max }\right\} ; \omega_{\max }\) should be at least ten \\
times \(\omega_{\min }\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output Argument & Description \\
\hline K & LTI controller \\
\hline \begin{tabular}{l} 
CL \(=\) G*K \(/(\) I \\
+GK \()\)
\end{tabular} & LTI closed-loop system \\
\hline GAM & Loop-shaping accuracy (GAM \(\geq 1\), with GAM=1 being perfect fit \\
\hline INFO & Additional output information \\
\hline INFO.W & \begin{tabular}{l} 
LTI pre-filter \(W\) satisfying \(\sigma\left(G_{d}\right)=\sigma(G W)\) for all \(\omega ;\) \\
\\
\(W\) is always minimum-phase.
\end{tabular} \\
\hline INFO.Gs & LTI shaped plant: \(G_{s}=G W\). \\
\hline INFO. Ks & LTI controller for the shaped plant: \(K_{s}=W K\). \\
\hline INFO. range & \begin{tabular}{l}
\(\left\{\omega_{\min }, \omega_{\max }\right\}\) cell-array containing the approximate frequency range \\
over which loop-shaping could be accurately achieved to with \\
accuracy \(G\). The output INFO. range is either the same as or a subset \\
of the input range.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

\section*{Optimal loopsyn Loop-Shaping Control}

Calculate the optimal loopsyn loop shaping control for a 5 -state, 4 -output, 5 -input plant with a full-rank nonmininum-phase zero at \(s=10\).
```

rng(0,'twister');
s = tf('s');
wO = 5;
Gd = 5/s; % desired bandwidth w0=5
G =((s-10)/(s+100))*rss(3,4,5); % 4-by-5 non-min-phase plant
[K,CL,GAM,INFO] = loopsyn(G,Gd);
sigma(G*K,'r',Gd*GAM,'k-.',Gd/GAM,'k-.' , {.1,100}) % plot result
legend('G*K', 'Gd*GAM ', 'Gd/GAM ')

```

Singular Values


This plot shows that the controller K optimally fits sigma ( \(G * K\) ). The controller falls between sigma (Gd) + GAM and sigma (Gd) - GAM (expressed in dB). In this example, \(\mathrm{GAM}=2.0423=6.2026 \mathrm{~dB}\).

\section*{Limitations}

The plant G must be stabilizable and detectable, must have at least as many inputs as outputs, and must be full rank; i.e,
- \(\operatorname{size}(G, 2) \geq \operatorname{size}(G, 1)\)
- \(\operatorname{rank}(f r \operatorname{eqresp}(G, w))=\operatorname{size}(G, 1)\) for some frequency \(w\).

The order of the controller \(K\) can be large. Generically, when \(G_{d}\) is given as a SISO LTI, then the order \(N_{K}\) of the controller \(K\) satisfies
\(N_{K}=N_{G s}+N_{W}\)
\(=N_{y} N_{G d}+N_{R H P}+N_{W}\)
\(=N_{y} N_{G d}+N_{R H P}+N_{G}\)
where
- \(N_{y}\) denotes the number of outputs of the plant \(G\).
- \(N_{R H P}\) denotes the total number of nonstable poles and nonminimum-phase zeros of the plant \(G\), including those on the stability boundary and at infinity.
- \(N_{G}, N_{G s}, N_{G d}\) and \(N_{W}\) denote the respective orders of \(G, G_{s}, G_{d}\) and \(W\).

Model reduction can help reduce the order of \(K\) - see reduce and ncfmr.

\section*{More About}

\section*{Algorithms}

Using the GCD formula of Le and Safonov [1], loopsyn first computes a stable-minimum-phase loop-shaping, squaring-down prefilter \(W\) such that the shaped plant \(G_{s}=\) \(G W\) is square, and the desired shape \(G_{d}\) is achieved with good accuracy in the frequency range \(\left\{\omega_{\min }, \omega_{\max }\right\}\) by the shaped plant; i.e., \(\sigma\left(G_{d}\right) \approx \sigma\left(G_{s}\right)\) for all \(\omega \in\left\{\omega_{\min }, \omega_{\max }\right\}\).

Then, loopsyn uses the Glover-McFarlane [2] normalized-coprime-factor control synthesis theory to compute an optimal "loop-shaping" controller for the shaped plant via \(K s=n c f \operatorname{syn}(G s)\), and returns \(K=W * K s\).

If the plant \(G\) is a continuous time LTI and
\(1 G\) has a full-rank D-matrix, and
2 no finite zeros on the \(j \omega\)-axis, and
\(3\left\{\omega_{\min }, \omega_{\max }\right\}=[0, \infty]\),
then \(G W\) theoretically achieves a perfect accuracy fit \(\sigma\left(G_{d}\right)=\sigma(G W)\) for all frequency \(\omega\).
Otherwise, loopsyn uses a bilinear pole-shifting bilinear transform [3] of the form
Gshifted=bilin(G,-1,'S_Tust', \(\left.\left[\omega_{\min }, \omega_{\max }\right]\right)\),
which results in a perfect fit for transformed Gshifted and an approximate fit over the smaller frequency range [ \(\omega_{\min }, \omega_{\max }\) ] for the original unshifted \(G\) provided that \(\omega_{\max }\) \(\gg \omega_{\min }\). For best results, you should choose \(\omega_{\max }\) to be at least 100 times greater than \(\omega_{\min }\). In some cases, the computation of the optimal \(W\) for Gshifted may be singular or ill-conditioned for the range [ \(\omega_{\min }, \omega_{\max }\) ], as when Gshifted has undamped zeros or, in the continuous-time case only, Gshifted has a \(D\)-matrix that is rank-deficient); in such cases, loopsyn automatically reduces the frequency range further, and returns the reduced range \(\left[\omega_{\min }, \omega_{\max }\right.\) ] as a cell array in the output INFO. range \(=\left\{\omega_{\min }, \omega_{\max }\right\}\)
- Loop Shaping of HIMAT Pitch Axis Controller

\section*{References}
[1] Le, V.X., and M.G. Safonov. Rational matrix GCD's and the design of squaring-down compensators-a state space theory. IEEE Trans. Autom.Control, AC-36(3):384392, March 1992.
[2] Glover, K., and D. McFarlane. Robust stabilization of normalized coprime factor plant descriptions with \(H_{\infty}\)-bounded uncertainty. IEEE Trans. Autom. Control, AC-34(8):821-830, August 1992.
[3] Chiang, R.Y., and M.G. Safonov. \(H_{\infty}\) synthesis using a bilinear pole-shifting transform. AIAA J. Guidance, Control and Dynamics, 15(5):1111-1115, September-October 1992.

\author{
See Also \\ mixsyn | ncfsyn
}

\section*{Itiarray2uss}

Compute uncertain system bounding given LTI ss array

Note ltiarray2uss will be removed in a future release. Use ucover instead.

\section*{Syntax}
```

usys = ltiarray2uss(P,Parray,ord)

```
[usys,wt] = ltiarray2uss(P,Parray,ord)
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord)
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'InputMult')
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'OutputMult')
[usys,wt,diffdata] = ltiarray2uss(P,Parray,ord,'Additive')

\section*{Description}

The command ltiarray2uss, calculates an uncertain system usys with nominal value P , and whose range of behavior includes the given array of systems, Parray.
usys = ltiarray2uss(P,Parray,ord), usys is formulated as an input multiplicative uncertainty model,
usys \(=P^{*}\left(I+w^{*} u l t i d y n(' I M u l t ',[\operatorname{size}(P, 2) \operatorname{size}(P, 2)])\right.\), where wt is a stable scalar system, whose magnitude overbounds the relative difference, ( P Parray)/P. The state order of the weighting function used to bound the multiplicative difference between \(P\) and Parray is ord. Both \(P\) and Parray must be in the classes ss/ \(t f / z p k / f r d\). If \(P\) is an \(f r d\) then usys will be a ufrd object, otherwise usys will be a
uss object. The ultidyn atom is named based on the variable name of Parray in the calling workspace.
[usys, wt] = ltiarray2uss (P, Parray,ord), returns the weight wt used to bound the infinity norm of ( \((P\) - Parray)/P).
[usys,wt] = ltiarray2uss(P,Parray,ord,'OutputMult'), uses multiplicative uncertainty at the plant output (as opposed to input multiplicative uncertainty). The formula for usys is
usys \(=(I+w t * u l t i d y n(' N a m e ',[s i z e(P, 1) ~ s i z e(P, 1)]) * P)\).
[usys,wt] = ltiarray2uss(P,Parray,ord,'Additive'), uses additive uncertainty.
usys = P + wt*ultidyn('Name', [size( \(\mathrm{P}, 1\) ) size \((\mathrm{P}, 2)]\) ). wt is a frequency domain overbound of the infinity norm of (Parray - P).
[usys,wt] = ltiarray2uss(P,Parray,ord,'InputMult'), uses multiplicative uncertainty at the plant input (this is the default). The formula for usys is usys = P*(I + wt*ultidyn('Name', [size(P,2) size( \(\mathrm{P}, 2\) ) ]) ).
[usys,wt, diffdata] = ltiarray2uss(P,Parray,ord,type) returns the norm of the difference (absolute difference for additive, and relative difference for multiplicative uncertainty) between the nominal model P and Parray. wt satisfies diffdata(w_i) < \(\left|w t\left(w \_i\right)\right|\) at all frequency points.

\section*{Examples}

\section*{Uncertain System Bounding an LTI Array}

Consider a third order transfer function with an uncertain gain, filter time constant and a lightly damped flexible mode. This model is used to represent a physical system from which frequency response data is acquired.
```

gain = ureal('gain',10,'Perc',20);
tau = ureal('tau',.6,'Range',[.42 .9]);
wn = 40;
zeta = 0.1;
usys = tf(gain,[tau 1])*tf(wn^2,[1 2*zeta*wn wn^2]);

```
```

sysnom = usys.NominalValue;
parray = usample(usys,30);
om = logspace(-1,2,80);
parrayg = frd(parray,om);
bode(parrayg)

```


The frequency response data in parray represents 30 experiments performed on the system. The command ltiarray2uss is used to generate an uncertain model, umod, based on the frequency response data. Initially an input multiplicative uncertain model is used to characterize the collection of 30 frequency responses. First and second order input multiplicative uncertainty weight are calculated from the data.
[umodIn1,wtIn1,diffdataIn] = ltiarray2uss(sysnom,parrayg,1);
```

[umodIn2,wtIn2,diffdataIn] = ltiarray2uss(sysnom,parrayg,2);
bodemag(wtIn1,'b-',wtIn2,'g+',diffdataIn,'r.',om)
title('Input Multiplicative Uncertainty Model Using ltiarray2uss')
legend('1st order','2nd order','difference','Location','SouthEast')

```

Input Multiplicative Uncertainty Model Using Itiarray2uss


Alternatively, an additive uncertain model is used to characterize the collection of 30 frequency responses.
```

[umodAdd1,wtAdd1,diffdataAdd] = ltiarray2uss(sysnom,parrayg,1,'Additive');
[umodAdd2,wtAdd2,diffdataAdd] = ltiarray2uss(sysnom,parrayg,2,'Additive');
bodemag(wtAdd1,'b-',wtAdd2,'g+',diffdataAdd,'r.',om)
title('Additive Uncertainty Model Using ltiarray2uss')
legend('1st order','2nd order','difference')

```

- First-Cut Robust Design

\section*{See Also}
fitmagfrd | uss | ultidyn

\section*{Itrsyn}

LQG loop transfer-function recovery (LTR) control synthesis

\section*{Syntax}
```

[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO)
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W)
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,OPT)
[K,SVL,W1] = ltrsyn(G,F,XI,THETA,RHO,W,OPT)

```

\section*{Description}
[K,SVL, W1] = ltrsyn(G,F,XI, TH, RHO) computes a reconstructed-state outputfeedback controller K for LTI plant G so that K*G asymptotically recovers plant-input full-state feedback loop transfer function \(L(s)=F(I s-A)^{-1} B+D\); that is, at any frequency \(w>0, \max (\operatorname{sigma}(\mathrm{~K} * \mathrm{G}-\mathrm{L}, \mathrm{w})) \rightarrow 0\) as \(\rho \rightarrow \infty\), where \(\mathrm{L}=\mathrm{ss}(\mathrm{A}, \mathrm{B}, \mathrm{F}, \mathrm{D})\) is the LTI fullstate feedback loop transfer function.
\([K, S V L, W 1]=1 \operatorname{trsyn}\left(G, F 1, Q, R, R H O,{ }^{\prime}\right.\) 'OUTPUT \(\left.{ }^{\prime}\right)\) computes the solution to the `dual' problem of filter loop recovery for LTI plant \(G\) where \(F\) is a Kalman filter gain matrix. In this case, the recovery is at the plant output, and max (sigma ( \(G * K-L\), w) ) \(\rightarrow 0\) as \(\rho \rightarrow \infty\), where L1 denotes the LTI filter loop feedback loop transfer function L1= ss (A, F, C, D).

Only the LTI controller K for the final value RHO (end) is returned.
\begin{tabular}{|l|l|}
\hline Inputs & \\
\hline G & LTI plant \\
\hline F & LQ full-state-feedback gain matrix \\
\hline XI & \begin{tabular}{l} 
plant noise intensity, \\
or, if OPT \(=\) ' OUTPUT'
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Inputs & \\
\hline THETA & \begin{tabular}{l} 
sensor noise intensity \\
or, if OPT= ' OUTPUT' control-cost matrix THETA=R,
\end{tabular} \\
\hline RHO & vector containing a set of recovery gains \\
\hline W & \begin{tabular}{l} 
(optional) vector of frequencies (to be used for plots); if input W is not \\
supplied, then a reasonable default is used
\end{tabular} \\
\hline Outputs & \begin{tabular}{l} 
K(s) - LTI LTR (loop-transfer-recovery) output-feedback, for the last \\
element of RHO (i.e., RHO(end))
\end{tabular} \\
\hline K & \begin{tabular}{l} 
sigma plot data for the recovered loop transfer function if G is MIMO \\
or, for SISO G only, Nyquist loci SVL = [re (1:nr) im (1:nr) ]
\end{tabular} \\
\hline SVL & frequencies for SVL plots, same as W when present \\
\hline W1 &
\end{tabular}

\section*{Examples}
```

s=tf('s');G=ss(1e4/((s+1)*(s+10)*(s+100)));[A,B,C,D]=ssdata(G);
F=lqr(A,B,C'*C,eye(size(B,2)));
L=ss(A,B,F,0*F*B);
XI=100*C'*C; THETA=eye(size(C,1));
RHO=[1e3,1e6,1e9,1e12];W=logspace(-2,2);
nyquist(L,'k-.');hold;
[K,SVL,W1]=ltrsyn(G,F,XI,THETA,RHO,W);

```

\section*{See also ltrdemo}

\section*{Limitations}

The ltrsyn procedure may fail for non-minimum phase plants. For full-state LTR (default OPT= ' INPUT'), the plant should not have fewer outputs than inputs. Conversely for filter LTR (when OPT= ' OUTPUT'), the plant should not have fewer inputs than outputs. The plant must be strictly proper, i.e., the \(D\)-matrix of the plant should be all zeros. ltrsyn is only for continuous time plants ( \(\mathrm{Ts}==0\) )

\section*{More About}

\section*{Algorithms}

For each value in the vector RHO, [K, SVL, W1] = ltrsyn(G,F,XI, THETA, RHO) computes the full-state-feedback (default OPT= ' INPUT') LTR controller
\[
K(s)=\left[K_{c}\left(I s-A+B K_{c}+K_{f} C-K_{f} D K_{c}\right)^{-1} K_{f}\right]
\]
where \(K_{c}=\mathrm{F}\) and \(K_{f}=\operatorname{lqr}\left(\mathrm{A}^{\prime}, \mathrm{C}^{\prime}, \mathrm{XI}+\mathrm{RHO}(\mathrm{i}) * \mathrm{~B}^{*} \mathrm{~B}^{\prime}\right.\), THETA). The "fictitious noise" term RHO (i) *B*B' results in loop-transfer recovery as RHO (i) \(\rightarrow \infty\). The Kalman filter gain is \(K_{f}=\Sigma C^{T} \Theta^{-1}\) where \(\Sigma\) satisfies the Kalman filter Riccati equation \(0=\Sigma A^{T}+A \Sigma-\Sigma C^{T} \Theta^{-1} C \Sigma+\Xi+\rho B B^{T}\). See [1] for further details.

Similarly for the 'dual' problem of filter loop recovery case, [K, SVL, W1] = ltrsyn (G,F, Q, R, RHO, 'OUTPUT') computes a filter loop recovery controller of the same form, but with \(K_{f}=\mathrm{F}\) is being the input filter gain matrix and the control gain matrix \(K_{c}\) computed as \(K_{c}=\operatorname{lqr}\left(\mathrm{A}, \mathrm{B}, \mathrm{Q}+\mathrm{RHO}(\mathrm{i}) * \mathrm{C}^{\prime} * \mathrm{C}, \mathrm{R}\right)\).


\section*{Example of LQG/LTR at Plant Output.}

\section*{References}
[1] Doyle, J., and G. Stein, "Multivariable Feedback Design: Concepts for a Classical/ Modern Synthesis," IEEE Trans. on Automat. Contr., AC-26, pp. 4-16, 1981.

\author{
See Also \\ h2syn | hinfsyn | ncfsyn | lqg | loopsyn
}

\section*{makeweight}

First-order weighting function with specified DC gain, crossover frequency, and highfrequency gain
makeweight is a convenient way to specify loop shapes, target gain profiles, or weighting functions for applications such as controller synthesis and control system tuning.

\section*{Syntax}
```

W = makeweight(dcgain,wc,hfgain)
W = makeweight(dcgain,wc,hfgain,Ts)

```

\section*{Description}

W = makeweight(dcgain, wc, hfgain) creates a stable, first-order, continuoustime state-space model whose frequency response has the specified low-frequency gain, crossover frequency, and high-frequency gain. In other words, the response of W satisfies:
\[
\begin{aligned}
W(j \cdot 0) & =\text { dcgain } \\
|W(j \cdot \mathrm{wc})| & =1 \\
W(j \cdot \infty) & =\text { hfgain. }
\end{aligned}
\]

The low-frequency gain and the high-frequency gain must satisfy either |dcgain|<1< |hfgain| or |hfgain| \(<1<\mid\) dcgain|.

W = makeweight(dcgain, wc, hfgain, Ts) creates a stable, first-order, discrete-time state-space model with the specified sample time. The response of W satisfies:
\[
\begin{aligned}
W\left(e^{j \cdot 0 \cdot T \mathrm{~s}}\right) & =\text { dcgain } \\
\left|W\left(e^{j \cdot \mathrm{wc} \cdot \mathrm{Ts}}\right)\right| & =1 \\
W\left(e^{j \pi}\right) & =\text { hfgain. }
\end{aligned}
\]

As in the continuous-time case, the low-frequency gain and the high-frequency gain must satisfy either |dcgain| \(<1<\mid\) hfgain| or \(\mid\) hfgain| \(<1<\mid\) dcgain|. In addition, the crossover frequency must satisfy WC*Ts \(<\pi\).

\section*{Examples}

\section*{Continuous-Time Weighting Functions}

Create continuous-time weighting functions by specifying low-frequency gain, highfrequency gain, and crossover frequencies.

Create a weighting function with gain of 40 dB at low frequency, rolling off to -20 dB at high frequency. Specify a crossover frequency of \(0.4 \mathrm{rad} / \mathrm{s}\).

Wl = makeweight(100, .4, .10);
Create a weighting function with gain of -10 dB at low frequency, rising to 40 dB at high frequency. Specify a crossover frequency of \(20 \mathrm{rad} / \mathrm{s}\).

Wh = makeweight ( \(0.316,20,100\) );
Plot the magnitudes of the weighting functions to confirm that they meet the response specifications.
bodemag (Wl,Wh)


\section*{Weighting Functions With Roll-Off}

Create a gain profile that rolls off at high frequency without flattening. Specify a gain of 40 dB at low frequency and a crossover frequency of \(10 \mathrm{rad} / \mathrm{s}\).

W = makeweight(100, 10, 0);
Specifying a high-frequency gain of 0 ensures that the frequency response rolls off at high frequencies without leveling off.

Plot the gain profile to confirm the shape.
```

bodemag(W)

```

\section*{Bode Diagram}


\section*{Discrete-Time Weighting Functions}

Create discrete-time weighting functions by specifying low-frequency gain, highfrequency gain, crossover frequencies, and sample time.

Create a weighting function with gain of 40 dB at low frequency, rolling off to -20 dB at high frequency. Specify a crossover frequency of \(0.4 \mathrm{rad} / \mathrm{s}\) and a sample time of 0.1 s .
```

Wl = makeweight(100,.4,.10,0.1);

```

Create a weighting function with gain of -10 dB at low frequency, rising to 40 dB at high frequency. Specify a crossover frequency of \(2 \mathrm{rad} / \mathrm{s}\) and a sample time of 0.1 s .
```

Wh = makeweight(0.316,2,100,0.1);

```

Plot the magnitudes of the weighting functions to confirm that they meet the response specifications.
bodemag (Wl, Wh )

Bode Diagram


The high-frequency leveling of Wh is somewhat distorted due to the proximity of its crossover frequency to the Nyquist frequency.

\section*{Input Arguments}
dcgain - Low-frequency gain
real scalar

Low-frequency gain of the weighting function, specified as a real scalar value. The gain is expressed in absolute units. For example, to specify a low-frequency gain of 20 dB , set dcgain \(=10\).

The low-frequency gain and the high-frequency gain must satisfy either |dcgain| \(<1<\) |hfgain| or |hfgain| \(<1<\mid\) dcgain|.

\section*{wc - Crossover frequency}

\section*{positive scalar}

Crossover frequency of the weighting function in radians/second, specified as a positive scalar value.

For discrete-time weighting functions, the crossover frequency must satisfy wc*Ts<п.

\section*{hfgain - High-frequency gain}
real scalar
High-frequency gain of the weighting function, specified as a real scalar value. The gain is expressed in absolute units. For example, to specify a high-frequency gain of -20 dB , set dcgain \(=0.1\).

The low-frequency gain and the high-frequency gain must satisfy either |dcgain| < \(1<\) \(\mid\) hfgain| or \(\mid\) hfgain \(|<1<|\) dcgain|.

\section*{Ts - sample time \\ positive scalar | - 1}
sample time of discrete-time weighting function, specified as a positive scalar value or as -1 . A positive value sets the sample time in seconds. A specified sample time must satisfy \(w C * T s<\Pi\). The value -1 creates a discrete-time state-space model with unspecified sample time.

\section*{Output Arguments}

\author{
W - Weighting function \\ state-space model
}

Weighting function, returned as a state-space (ss) model. For continuous-time weighting functions, the response of W satisfies:
\[
\begin{aligned}
W(j \cdot 0) & =\text { dcgain } \\
|W(j \cdot \mathrm{wc})| & =1 \\
W(j \cdot \infty) & =\text { hfgain. }
\end{aligned}
\]

For discrete-time weighting functions, the response of W satisfies:
\[
\begin{aligned}
W\left(e^{j \cdot 0 \cdot T \mathrm{~s}}\right) & =\text { dcgain } \\
\left|W\left(e^{j \cdot \mathrm{wc} \cdot \mathrm{Ts}}\right)\right| & =1 \\
W\left(e^{j \pi}\right) & =\text { hfgain. }
\end{aligned}
\]

\section*{See Also}

TuningGoal.LoopShape | TuningGoal.WeightedGain | TuningGoal.WeightedVariance | dksyn | hinfstruct | hinfsyn | ss

\section*{Introduced before R2006a}

\section*{matnbr}

Number of matrix variables in system of LMIs

\section*{Syntax}

K = matnbr(lmisys)

\section*{Description}
matnbr returns the number K of matrix variables in the LMI problem described by lmisys.

\author{
See Also \\ decnbr | lmiinfo | decinfo
}

\section*{mat2dec}

Extract vector of decision variables from matrix variable values

\section*{Syntax}
```

decvec = mat2dec(lmisys, X1, X2, X3, ...)

```

\section*{Description}

Given an LMI system lmisys with matrix variables \(X_{1}, \ldots, X_{K}\) and given values \(\mathrm{X} 1, \ldots, \mathrm{Xk}\) of \(X_{1}, \ldots, X_{K}\), mat2dec returns the corresponding value decvec of the vector of decision variables. Recall that the decision variables are the independent entries of the matrices \(X_{1}, \ldots, X_{K}\) and constitute the free scalar variables in the LMI problem.

This function is useful, for example, to initialize the LMI solvers mincx or gevp. Given an initial guess for \(X_{1}, \ldots, X_{K}\), mat2dec forms the corresponding vector of decision variables xinit.

An error occurs if the dimensions and structure of \(\mathrm{X} 1, \ldots, \mathrm{Xk}\) are inconsistent with the description of \(X_{1}, \ldots, X_{K}\) in lmisys.

\section*{Examples}

Consider an LMI system with two matrix variables \(X\) and \(Y\) such that
- \(X\) is a symmetric block diagonal with one 2-by-2 full block and one 2-by-2 scalar block.
- \(Y\) is a 2-by-3 rectangular matrix.

Particular instances of \(X\) and \(Y\) are
\[
X_{0}=\left(\begin{array}{cccc}
1 & 3 & 0 & 0 \\
3 & -1 & 0 & 0 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 5
\end{array}\right), \quad Y_{0}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
\]
and the corresponding vector of decision variables is given by
```

decv = mat2dec(lmisys,XO,YO)

```
decv'
ans =
\begin{tabular}{llllllllll}
1 & 3 & -1 & 5 & 1 & 2 & 3 & 4 & 5 & 6
\end{tabular}

Note that decv is of length 10 since \(Y\) has 6 free entries while \(X\) has 4 independent entries due to its structure. Use decinfo to obtain more information about the decision variable distribution in \(X\) and \(Y\).

\section*{See Also}
dec2mat | decnbr | decinfo

\section*{mincx}

Minimize linear objective under LMI constraints

\section*{Syntax}
```

[copt,xopt] = mincx(lmisys,c,options,xinit,target)

```

\section*{Description}

The function mincx solves the convex program
\[
\operatorname{minimize} c^{T} x \text { subject to } N^{T} L(x) N \leq M^{T} R(x) M
\]
where \(x\) denotes the vector of scalar decision variables.
The system of LMIs is described by lmisys. The vector c must be of the same length as \(x\). This length corresponds to the number of decision variables returned by the function decnbr. For linear objectives expressed in terms of the matrix variables, the adequate c vector is easily derived with defcx.

The function mincx returns the global minimum copt for the objective \(c^{T} x\), as well as the minimizing value xopt of the vector of decision variables. The corresponding values of the matrix variables is derived from xopt with dec2mat.

The remaining arguments are optional. The vector xinit is an initial guess of the minimizer xopt. It is ignored when infeasible, but may speed up computations otherwise. Note that xinit should be of the same length as c. As for target, it sets some target for the objective value. The code terminates as soon as this target is achieved, that is, as soon as some feasible \(x\) such that \(c^{T} x \leq\) target is found. Set options to [] to use xinit and target with the default options.

\section*{Control Parameters}

The optional argument options gives access to certain control parameters of the optimization code. In mincx, this is a five-entry vector organized as follows:
- options(1) sets the desired relative accuracy on the optimal value lopt (default = 10-2).
- options(2) sets the maximum number of iterations allowed to be performed by the optimization procedure (100 by default).
- options (3) sets the feasibility radius. Its purpose and usage are as for feasp.
- options (4) helps speed up termination. If set to an integer value \(J>0\), the code terminates when the objective \(c^{T} x\) has not decreased by more than the desired relative accuracy during the last \(J\) iterations.
- options (5) = 1 turns off the trace of execution of the optimization procedure. Resetting options (5) to zero (default value) turns it back on.

Setting option(i) to zero is equivalent to setting the corresponding control parameter to its default value. See feasp for more detail.

\section*{Tip for Speed-Up}

In LMI optimization, the computational overhead per iteration mostly comes from solving a least-squares problem of the form
\[
\min _{x}|A x-b|
\]
where \(x\) is the vector of decision variables. Two methods are used to solve this problem: Cholesky factorization of \(A^{T} A\) (default), and QR factorization of \(A\) when the normal equation becomes ill conditioned (when close to the solution typically). The message
```

* switching to QR

```
is displayed when the solver has to switch to the QR mode.
Since \(Q R\) factorization is incrementally more expensive in most problems, it is sometimes desirable to prevent switching to QR. This is done by setting options (4) = 1 . While not guaranteed to produce the optimal value, this generally achieves a good trade-off between speed and accuracy.

\section*{Memory Problems}

QR-based linear algebra (see above) is not only expensive in terms of computational overhead, but also in terms of memory requirement. As a result, the amount of memory
required by QR may exceed your swap space for large problems with numerous LMI constraints. In such case, MATLAB issues the error
??? Error using ==> pds
Out of memory. Type HELP MEMORY for your options.
You should then ask your system manager to increase your swap space or, if no additional swap space is available, set options(4) = 1 . This will prevent switching to QR and mincx will terminate when Cholesky fails due to numerical instabilities.

\section*{References}

The solver mincx implements Nesterov and Nemirovski's Projective Method as described in

Nesterov, Yu, and A. Nemirovski, Interior Point Polynomial Methods in Convex Programming: Theory and Applications, SIAM, Philadelphia, 1994.

Nemirovski, A., and P. Gahinet, "The Projective Method for Solving Linear Matrix Inequalities," Proc. Amer. Contr. Conf., 1994, Baltimore, Maryland, pp. 840-844.

The optimization is performed by the C-MEX file pds.mex.
```

See Also
defcx | mincx | dec2mat | decnbr | feasp | gevp

```

\section*{mixsyn}
\(H_{\infty}\) mixed-sensitivity synthesis method for robust control loopshaping design

\section*{Syntax}
```

[K,CL,GAM, INFO]=mixsyn(G,W1,W2,W3)
[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,....)

```

\section*{Description}
[K, CL , GAM, INFO]=mixsyn(G,W1, W2, W3) computes a controller \(K\) that minimizes the \(H_{\infty}\) norm of the closed-loop transfer function the weighted mixed sensitivity
\[
T_{y 1 u 1} \triangleq\left[\begin{array}{c}
W_{1} S \\
W_{2} R \\
W_{3} T
\end{array}\right]
\]
where \(S\) and \(T\) are called the sensitivity and complementary sensitivity, respectively and \(S, R\), and \(T\) are given by
\[
\begin{aligned}
& S=(I+G K)^{-1} \\
& R=K(I+G K)^{-1} \\
& T=G K(I+G K)^{-1}
\end{aligned}
\]


\section*{Closed-loop transfer function \(T_{\text {ylul }}\) for mixed sensitivity mixsyn.}

The returned values of \(S, R\), and \(T\) satisfy the following loop shaping inequalities:
\[
\begin{aligned}
& \bar{\sigma}(S(j \omega)) \leq \gamma \quad \underline{\sigma}\left(W_{1}^{-1}(j \omega)\right) \\
& \bar{\sigma}(R(j \omega)) \leq \gamma \quad \underline{\sigma}\left(W_{2}^{-1}(j \omega)\right) \\
& \bar{\sigma}(T(j \omega)) \leq \gamma \quad \underline{\sigma}\left(W_{3}^{-1}(j \omega)\right)
\end{aligned}
\]
where \(\gamma=\) GAM. Thus, \(W_{1}, W_{3}\) determine the shapes of sensitivity \(S\) and complementary sensitivity \(T\). Typically, you would choose \(W_{1}\) to be small inside the desired control bandwidth to achieve good disturbance attenuation (i.e., performance), and choose \(W_{3}\) to be small outside the control bandwidth, which helps to ensure good stability margin (i.e., robustness).

For dimensional compatibility, each of the three weights \(W_{1}, W_{2}\) and \(W_{3}\) must be either empty, scalar (SISO) or have respective input dimensions \(N_{Y}, N_{U}\), and \(N_{Y}\) where \(G\) is \(N_{Y}\)-by- \(N_{U}\). If one of the weights is not needed, you may simply assign an empty matrix []; e.g., \(\mathrm{P}=\operatorname{AUGW}(\mathrm{G}, \mathrm{W} 1,[], \mathrm{W} 3)\) is SYS but without the second row (without the row containing W2).

\section*{Examples}

\section*{Loop Shaping with mixsyn}

This example shows the use of mixsyn for sensitivity and complementary sensitivity loop shaping.
```

s = zpk('s');
G = (s-1)/(s+1)^2;
W1 = 0.1*(s+100)/(100*s+1);
W2 = 0.1;
[K,CL,GAM] = mixsyn(G,W1,W2,[]);
L = G*K;
S = inv(1+L);
T = 1-S;
sigma(S,'g',T,'r',GAM/W1,'g-.',GAM*G/ss(W2),'r-.')
legend('S','T','GAM/W1','GAM*G/ss(W2)','Location','SouthWest')

```


The mixsyn command shapes the singular values of S and T to conform to GAM/W1 and GAM*G/W2, respectively.

\section*{Limitations}

The transfer functions \(G, W_{1}, W_{2}\) and \(W_{3}\) must be proper, i.e., bounded as \(s \rightarrow \infty\) or, in the discrete-time case, as \(z \rightarrow \infty\). Additionally, \(W_{1}, W_{2}\) and \(W_{3}\) should be stable. The plant \(G\) should be stabilizable and detectable; else, P will not be stabilizable by any K .

\section*{More About}

\section*{Algorithms}
[K, CL , GAM , INFO]=mixsyn(G,W1, W2, W3, KEY1, VALUE1, KEY2, VALUE2, . . .)
is equivalent to
[K, CL, GAM, INFO]=. . .
hinfsyn(augw(G,W1,W2,W3), KEY1, VALUE1, KEY2, VALUE2, ...).
mixsyn accepts all the same key value pairs as hinfsyn.

\author{
See Also \\ augw \| hinfsyn
}

\section*{mkfilter}

Generate Bessel, Butterworth, Chebyshev, or RC filter

\section*{Syntax}
sys = mkfilter(fc,ord,type)
sys = mkfilter(fc,ord,type,psbndr)

\section*{Description}
sys = mkfilter(fc,ord,type) returns a single-input, single-output analog low pass filter sys as an ss object. The cutoff frequency (Hertz) is fc and the filter order is ord, a positive integer. The string variable type specifies the type of filter and can be one of the following
\begin{tabular}{|l|l|}
\hline String variable & Description \\
\hline 'butterw' & Butterworth filter \\
\hline ' cheby ' & Chebyshev filter \\
\hline 'bessel ' & Bessel filter \\
\hline 'rc ' & Series of resistor/capacitor filters \\
\hline
\end{tabular}

The dc gain of each filter (except even-order Chebyshev) is set to unity.
sys = mkfilter(fc,ord,type,psbndr) contains the input argument psbndr that specifies the Chebyshev passband ripple (in dB ). At the cutoff frequency, the magnitude is -psbndr dB. For even-order Chebyshev filters the DC gain is also - psbndr dB.

\section*{Examples}

\section*{Generate Filters}

Generate several different types of filters and compare their frequency responses.
```

butw = mkfilter(2,4,'butterw');
cheb = mkfilter(4,4,'cheby',0.5);

```
```

rc = mkfilter(1,4,'rc');
bode(butw,'-',cheb,'--',rc,'-.')
legend('Butterworth','Chebyshev','RC filter')

```


\section*{Limitations}

The Bessel filters are calculated using the recursive polynomial formula. This is poorly conditioned for high order filters (order > 8).

\section*{See Also}
augw

\section*{mktito}

Partition LTI system into two-input/two-output system

\section*{Syntax}

SYS=mktito(SYS, NMEAS,NCONT)

\section*{Description}

SYS=mktito (SYS, NMEAS, NCONT) adds TITO (two-input/two-output) partitioning to LTI system SYS, assigning OutputGroup and InputGroup properties such that


Any preexisting OutputGroup or InputGroup properties of SYS are overwritten. TITO partitioning simplifies syntax for control synthesis functions like hinfsyn and h2syn.

\section*{Examples}

You can type
```

P=rss(2,4,5); P=mktito(P,2,2);
disp(P.OutputGroup); disp(P.InputGroup);

```
to create a 4-by-5 LTI system \(P\) with OutputGroup and InputGroup properties
U1: [1 2 3]

U2: [4 5]
Y1: [ll \(\left.1 \begin{array}{ll}1 & 2\end{array}\right]\)
Y2: [3 4]

\section*{More About}

\section*{Algorithms}
[r,c]=size(SYS);
set(SYS,'InputGroup', struct('U1',1:c-NCONT,'U2', c-NCONT+1:c));
set(SYS, 'OutputGroup', struct('Y1',1:r-NMEAS, 'Y2', r-NMEAS+1:r));

\author{
See Also \\ augw | hinfsyn | h2syn | sdhinfsyn
}

\section*{modreal}

Modal form realization and projection

\section*{Syntax}
```

[G1,G2] = modreal(G,cut)

```

\section*{Description}
[G1,G2] = modreal(G, cut) returns a set of state-space LTI objects G1 and G2 in modal form given a state-space \(G\) and the model size of \(G 1\), cut.

The modal form realization has its A matrix in block diagonal form with either 1 x 1 or \(2 \times 2\) blocks. The real eigenvalues will be put in 1 x 1 blocks and complex eigenvalues will be put in 2 x 2 blocks. These diagonal blocks are ordered in ascending order based on eigenvalue magnitudes.

The complex eigenvalue \(\mathrm{a}+\mathrm{bj}\) is appearing as 2 x 2 block
\[
\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right]
\]

This table describes input arguments for modreal.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline G & LTI model to be reduced. \\
\hline cut & \begin{tabular}{l} 
(Optional) an integer to split the realization. Without it, a complete \\
modal form realization is returned
\end{tabular} \\
\hline
\end{tabular}

This table lists output arguments.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline G1, G2 & LTI models in modal form \\
\hline
\end{tabular}

G can be stable or unstable. \(G_{1}=\left(A_{1}, B_{1}, C_{1}, D_{1}\right), G_{2}=\left(A_{2}, B_{2}, C_{2}, D_{2}\right)\) and \(D_{1}=D+\) \(C_{2}\left(-A_{2}\right)^{-1} B_{2}\) is calculated such that the system DC gain is preserved.

\section*{Examples}

Given a continuous stable or unstable system, \(G\), the following commands can get a set of modal form realizations depending on the split index -- cut:
```

rng(1234,'twister');
G = rss(50,2,2);
[G1,G2] = modreal(G,2); % cut = 2 for two rigid body modes
G1.d = zeros(2,2); % remove the DC gain of the system from G1
sigma(G,G1,G2)

```

\section*{More About}

\section*{Algorithms}

Using a real eigen structure decomposition reig and ordering the eigenvectors in ascending order according to their eigenvalue magnitudes, we can form a similarity transformation out of these ordered real eigenvectors such that he resulting systems G1 and/or G2 are in block diagonal modal form.

Note This routine is extremely useful when model has \(\mathrm{j} \omega\)-axis singularities, e.g., rigid body dynamics. It has been incorporated inside Hankel based model reduction routines hankelmr, balancmr, bstmr, and schurmr to isolate those \(\mathrm{j} \omega\)-axis poles from the actual model reduction process.

\section*{See Also}
reduce | balancmr | bstmr | ncfmr | schurmr | hankelmr | hankelsv

\section*{msfsyn}

Multi-model/multi-objective state-feedback synthesis

\section*{Syntax}
[gopt, h2opt, K, Pcl, X] = msfsyn(P,r,obj,region,tol)

\section*{Description}

Given an LTI plant \(P\) with state-space equations
\[
\left\{\begin{aligned}
\dot{x} & =A x+B_{1} w+B_{2} u \\
z_{\infty} & =C_{1} x+D_{11} w+D_{12} u \\
z_{2} & =C_{2} x+D_{22} u
\end{aligned}\right.
\]
msfsyn computes a state-feedback control \(u=K x\) that
- Maintains the RMS gain ( \(H_{\infty}\) norm) of the closed-loop transfer function \(T_{\infty}\) from \(w\) to \(z_{\infty}\) below some prescribed value \(\gamma_{0}>0\)
- Maintains the \(H_{2}\) norm of the closed-loop transfer function \(T_{2}\) from \(w\) to \(z_{2}\) below some prescribed value \(\mathrm{u}_{0}>0\)
- Minimizes an \(H_{2} / H_{\infty}\) trade-off criterion of the form
\[
\alpha\left\|T_{\infty}\right\|_{\infty}^{2}+\beta\left\|T_{2}\right\|_{2}^{2}
\]
- Places the closed-loop poles inside the LMI region specified by region (see lmireg for the specification of such regions). The default is the open left-half plane.

Set \(r=\operatorname{size}(\mathrm{d} 22)\) and \(\mathrm{obj}=\left[\gamma_{0}, \mathrm{v}_{0}, a, B\right]\) to specify the problem dimensions and the design parameters \(\gamma_{0}, \mathrm{v}_{0}\), a , and \(B\). You can perform pure pole placement by setting obj \(=\) \(\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array}\right]\). Note also that \(z_{\infty}\) or \(z_{2}\) can be empty.

On output, gopt and h2opt are the guaranteed \(H_{\infty}\) and \(H_{2}\) performances, K is the optimal state-feedback gain, Pcl the closed-loop transfer function from \(w\) to \(\binom{z_{\infty}}{z_{2}}\), and X the corresponding Lyapunov matrix.

The function msfsyn is also applicable to multi-model problems where \(P\) is a polytopic model of the plant:
\[
\left\{\begin{aligned}
\dot{x} & =A(t) x+B_{1}(t) w+B_{2}(t) u \\
z_{\infty} & =C_{1}(t) x+D_{11}(t) w+D_{12}(t) u \\
z_{2} & =C_{2}(t) x+D_{22}(t) u
\end{aligned}\right.
\]
with time-varying state-space matrices ranging in the polytope
\[
\left(\begin{array}{ccc}
A(t) & B_{1}(t) & B_{2}(t) \\
C_{1}(t) & D_{11}(t) & D_{12}(t) \\
C_{2}(t) & 0 & D_{22}(t)
\end{array}\right) \in \operatorname{Co}\left\{\left(\begin{array}{ccc}
A_{k} & B_{k} & C_{k} \\
C_{1 k} & D_{11 k} & D_{12 k} \\
C_{2 k} & 0 & D_{22 k}
\end{array}\right): k=1, \ldots, K\right\}
\]

In this context, msfsyn seeks a state-feedback gain that robustly enforces the specifications over the entire polytope of plants. Note that polytopic plants should be defined with psys and that the closed-loop system Pcl is itself polytopic in such problems. Affine parameter-dependent plants are also accepted and automatically converted to polytopic models.

\section*{See Also}
lmireg | psys

\section*{MUSSV}

Compute bounds on structured singular value ( \(\mu\) )

\section*{Syntax}
```

bounds = mussv(M,BlockStructure)
[bounds,muinfo] = mussv(M,BlockStructure)
[bounds,muinfo] = mussv(M,BlockStructure,Options)
[ubound,q] = mussv(M,F,BlockStructure)
[ubound,q] = mussv(M,F,BlockStructure,'s')

```

\section*{Description}
bounds = mussv(M,BlockStructure) calculates upper and lower bounds on the structured singular value, or \(\mu\), for a given block structure. \(M\) is a double, or frd object. If \(M\) is an \(N\)-D array (with \(N \geq 3\) ), then the computation is performed pointwise along the third and higher array dimensions. If \(M\) is a \(f r d\) object, the computations are performed pointwise in frequency (as well as any array dimensions).

BlockStructure is a matrix specifying the perturbation block structure. BlockStructure has 2 columns, and as many rows as uncertainty blocks in the perturbation structure. The \(i\)-th row of BlockStructure defines the dimensions of the i'th perturbation block.
- If BlockStructure (i,:) = [-r 0], then the \(i\)-th block is an \(r\)-by-r repeated, diagonal real scalar perturbation;
- if BlockStructure (i,: ) = [rron, then the \(i\)-th block is an r-by-r repeated, diagonal complex scalar perturbation;
- if BlockStructure (i,: ) = [rc \(\left.\begin{array}{rl}r & c\end{array}\right]\), then the \(i\)-th block is an r-by-c complex fullblock perturbation.
- If BlockStructure is omitted, its default is ones(size (M,1), 2), which implies a perturbation structure of all 1-by-1 complex blocks. In this case, if size ( \(M, 1\) ) does not equal size ( \(M, 2\) ), an error results.

If \(M\) is a two-dimensional matrix, then bounds is a 1-by-2 array containing an upper (first column) and lower (second column) bound of the structured singular value of M. For all matrices Delta with block-diagonal structure defined by BlockStructure and with norm less than \(1 /\) bounds (1) (upper bound), the matrix I - M*Delta is not singular. Moreover, there is a matrix DeltaS with block-diagonal structure defined by BlockStructure and with norm equal to \(1 /\) bounds (2) (lower bound), for which the matrix I - M*DeltaS is singular.

The format used in the 3rd output argument from lftdata is also acceptable for describing the block structure.

If \(M\) is an \(f r d\), the computations are always performed pointwise in frequency. The output argument bounds is a 1-by-2 frd of upper and lower bounds at each frequency. Note that bounds.Frequency equals M.Frequency.

If \(M\) is an \(N\)-D array (either double or \(f r d\) ), the upper and lower bounds are computed pointwise along the 3 rd and higher array dimensions (as well as pointwise in frequency, for frd ). For example, suppose that size (M) is \(r \times c \times d_{1} \times \ldots \times d_{F}\). Then size(bounds) is \(1 \times 2 \times d_{1} \times \ldots \times d_{F}\). Using single index notation, bounds ( \(1,1, i\) ) is the upper bound for the structured singular value of \(M(:,:, i)\), and bounds \((1,2, i)\) is the lower bound for the structured singular value of \(M(:,:, i)\). Here, any \(i\) between 1 and \(d_{1} \cdot d_{2} \ldots d_{F}\) (the product of the \(d_{k}\) ) would be valid.
bounds = mussv(M,BlockStructure,Options) specifies computation options. Options is a character string, containing any combination of the following characters:
\begin{tabular}{|l|l|}
\hline Option & Meaning \\
\hline ' a ' & Upper bound to greatest accuracy, using LMI solver \\
\hline 'an ' & Same as ' a ', but without automatic prescaling \\
\hline ' \(\mathrm{d}^{\prime}\) & Display warnings \\
\hline ' f ' & Fast upper bound (typically not as tight as the default) \\
\hline 'gN' & \begin{tabular}{l} 
Use gain-based lower bound method multiple times. The value of \(N\) \\
sets the number of times, according to 10+ \(N^{*} 10\). For example, ' g 6 ' \\
uses gain-based lower bound 70 times. Larger numbers typically give \\
better lower bounds. \\
If all uncertainty blocks described by blk are real, then the default is \\
'g1'. If at least one uncertainty block is complex, then mussv uses \\
power iteration lower bound by default.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Option & Meaning \\
\hline 'p' & Use power iteration method to compute lower bound. When at least one of the uncertainty blocks described by blk is complex, then ' p ' is the default lower bound method. \\
\hline 'i' & Reinitialize lower bound computation at each new matrix (only relevant if M is ND array or frd) \\
\hline 'mN' & Randomly reinitialize lower bound iteration multiple times. \(N\) is an integer between 1 and 9 . For example, ' \(m 7\) ' randomly reinitializes the lower bound iteration 7 times. Larger numbers typically give better lower bounds. \\
\hline '0' & Run "old" algorithms, from version 3.1.1 and before. Included to allow exact replication of earlier calculations. \\
\hline 's' & Suppress progress information (silent). \\
\hline U' & Upper-bound "only" (lower bound uses a fast/cheap algorithm). \\
\hline 'x' & Decrease iterations in lower bound computation (faster but not as tight as default). Use ' U ' for an even faster lower bound. \\
\hline
\end{tabular}
[bounds, muinfo] = mussv(M,BlockStructure) returns muinfo, a structure containing more detailed information. The information within muinfo must be extracted using mussvextract. See mussvextract for more details.

\section*{Generalized Structured Singular Value}
ubound \(=\) mussv(M,F,BlockStructure) calculates an upper bound on the generalized structured singular value (generalized \(\mu\) ) for a given block structure. M is a double or frd object. \(M\) and BlockStructure are as before. \(F\) is an additional (double or frd).
ubound \(=\) mussv(M,F,BlockStructure, 's') adds an option to run silently. Other options are ignored for generalized \(\mu\) problems.

Note that in generalized structured singular value computations, only an upper bound is calculated. ubound is an upper bound of the generalized structured singular value of the pair ( \(M, F\) ), with respect to the block-diagonal uncertainty described by BlockStructure. Consequently ubound is 1-by-1 (with additional array dependence, depending on \(M\) and \(F\) ). For all matrices Delta with block-diagonal structure defined by BlockStructure and norm<1/ubound, the matrix [I-Delta*M;F] is guaranteed
not to lose column rank. This is verified by the matrix \(Q\), which satisfies mussv (M \(+Q * F, B l o c k S t r u c t u r e, ~ ' a ')<=u b o u n d\).

\section*{Examples}

See mussvextract for a detailed example of the structured singular value.
A simple example for generalized structured singular value can be done with random complex matrices, illustrating the relationship between the upper bound for \(\mu\) and generalized \(\mu\), as well as the fact that the upper bound for generalized \(\mu\) comes from an optimized \(\mu\) upper bound.

M is a complex 5 -by- 5 matrix and F is a complex 2 -by- 5 matrix. The block structure BlockStructure is an uncertain real parameter \(\delta_{1}\), an uncertain real parameter \(\delta_{2}\), an uncertain complex parameter \(\delta_{3}\) and a twice-repeated uncertain complex parameter \(\delta_{4}\).
```

rng(929,'twister')
M = randn(5,5) + sqrt(-1)*randn(5,5);
F = randn(2,5) + sqrt(-1)*randn (2,5);
BlockStructure = [-1 0;-1 0;1 1;2 0];
[ubound,Q] = mussv(M,F,BlockStructure);
bounds = mussv(M,BlockStructure);
optbounds = mussv(M+Q*F,BlockStructure);

```

The quantities optbounds (1) and ubound should be extremely close, and significantly lower than bounds (1) and bounds (2).
[optbounds(1) ubound]
ans \(=\)
\(2.2070 \quad 2.1749\)
[bounds(1) bounds(2)]
ans \(=\)
\(4.4049 \quad 4.1960\)

\section*{More About}

\section*{Algorithms}

The lower bound is computed using a power method, Young and Doyle, 1990, and Packard et al. 1988, and the upper bound is computed using the balanced/AMI technique, Young et al., 1992, for computing the upper bound from Fan et al., 1991.

Peter Young and Matt Newlin wrote the original function.
The lower-bound power algorithm is from Young and Doyle, 1990, and Packard et al. 1988.

The upper-bound is an implementation of the bound from Fan et al., 1991, and is described in detail in Young et al., 1992. In the upper bound computation, the matrix is first balanced using either a variation of Osborne's method (Osborne, 1960) generalized to handle repeated scalar and full blocks, or a Perron approach. This generates the standard upper bound for the associated complex \(\mu\) problem. The Perron eigenvector method is based on an idea of Safonov, (Safonov, 1982). It gives the exact computation of \(\mu\) for positive matrices with scalar blocks, but is comparable to Osborne on general matrices. Both the Perron and Osborne methods have been modified to handle repeated scalar and full blocks. Perron is faster for small matrices but has a growth rate of \(n^{3}\), compared with less than \(n^{2}\) for Osborne. This is partly due to the MATLAB implementation, which greatly favors Perron. The default is to use Perron for simple block structures and Osborne for more complicated block structures. A sequence of improvements to the upper bound is then made based on various equivalent forms of the upper bound. A number of descent techniques are used that exploit the structure of the problem, concluding with general purpose LMI optimization (Boyd et al.), 1993, to obtain the final answer.

The optimal choice of \(Q\) (to minimize the upper bound) in the generalized \(\mu\) problem is solved by reformulating the optimization into a semidefinite program (Packard et al., 1991).

\section*{References}
[1] Boyd, S. and L. El Ghaoui, "Methods of centers for minimizing generalized eigenvalues," Linear Algebra and Its Applications, Vol. 188-189, 1993, pp. 63111.
[2] Fan, M., A. Tits, and J. Doyle, "Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics," IEEE Transactions on Automatic Control, Vol. AC-36, 1991, pp. 25-38.
[3] Osborne, E., "On preconditioning of matrices," Journal of Associated Computer Machines, Vol. 7, 1960, pp. 338-345.
[4] Packard, A.K., M. Fan and J. Doyle, "A power method for the structured singular value," Proc. of 1988 IEEE Conference on Control and Decision, December 1988, pp. 2132-2137.
[5] Safonov, M., "Stability margins for diagonally perturbed multivariable feedback systems," IEEE Proc., Vol. 129, Part D, 1992, pp. 251-256.
[6] Young, P. and J. Doyle, "Computation of with real and complex uncertainties," Proceedings of the 29th IEEE Conference on Decision and Control, 1990, pp. 1230-1235.
[7] Young, P., M. Newlin, and J. Doyle, "Practical computation of the mixed problem," Proceedings of the American Control Conference, 1992, pp. 2190-2194.

\section*{See Also}
mussvextract | robuststab | robustperf | wcgain | wcsens | wcmargin

\section*{mussvextract}

Extract muinfo structure returned by mussv

\section*{Syntax}
[VDelta,VSigma,VLmi] = mussvextract(muinfo)

\section*{Description}

A structured singular value computation of the form
[bounds,muinfo] = mussv(M,BlockStructure)
returns detailed information in the structure muinfo. mussvextract is used to extract the compressed information within muinfo into a readable form.

The most general call to mussvextract extracts three usable quantities: VDelta, VSigma, and VLmi. VDelta is used to verify the lower bound. VSigma is used to verify the Newlin/Young upper bound and has fields DLeft, DRight, GLeft, GMiddle, and GRight. VLmi is used to verify the LMI upper bound and has fields Dr, Dc, Grc, and Gcr. The relation/interpretation of these quantities with the numerical results in bounds is described below.

\section*{Upper Bound Information}

The upper bound is based on a proof that \(\operatorname{det}(I-M * D e l t a)\) is nonzero for all block-structured matrices Delta with norm smaller than 1 /bounds (1). The Newlin/ Young method consists of finding a scalar \(B\) and matrices \(D\) and \(G\), consistent with BlockStructure, such that
\[
\bar{\sigma}\left(\left(I+G_{L}^{2}\right)^{-\frac{1}{4}}\left(\frac{D_{L} M D_{R}^{-1}}{\beta}-j G_{M}\right)\left(I+G_{R}^{2}\right)^{-\frac{1}{4}}\right) \leq 1
\]

Here \(D_{L}, D_{R}, G_{L}, G_{M}\), and \(G_{R}\) correspond to the DLeft, DRight, GLeft, GMiddle, and GRight fields respectively.

Because some uncertainty blocks and \(M\) need not be square, the matrices \(D\) and \(G\) have a few different manifestations. In fact, in the formula above, there are a left and right \(D\) and \(G\), as well as a middle \(G\). Any such \(B\) is an upper bound of mussv(M,BlockStructure).

It is true that if BlockStructure consists only of complex blocks, then all \(G\) matrices will be zero, and the expression above simplifies to
\[
\bar{\sigma}\left(D_{L} M D_{R}^{-1}\right) \leq \beta
\]

The LMI method consists of finding a scalar \(B\) and matrices \(D\) and \(G\), consistent with BlockStructure, such that
\[
M^{\prime} D_{r} M-\beta^{2} D_{c}+j\left(G_{c r} M-M^{\prime} G_{r c}\right) \leq 0
\]
is negative semidefinite. Again, \(D\) and \(G\) have a few different manifestations to match the row and column dimensions of M. Any such \(B\) is an upper bound of mussv (M, BlockStructure). If BlockStructure consists only of complex blocks, then all \(G\) matrices will be zero, and negative semidefiniteness of \(M^{\prime} D_{r} M-B^{2} D_{c}\) is sufficient to derive an upper bound.

\section*{Lower Bound Information}

The lower bound of mussv ( \(\mathrm{M}, \mathrm{BlockStructure)} \mathrm{is} \mathrm{based} \mathrm{on} \mathrm{finding} \mathrm{a} \mathrm{"small"} \mathrm{(hopefully}\) the smallest) block-structured matrix VDelta that causes det (I - M*VDelta) to equal 0 . Equivalently, the matrix M*VDelta has an eigenvalue equal to 1 . It will always be true that the lower bound (bounds(2)) will be the reciprocal of norm (VDelta).

\section*{Examples}

Suppose M is a 4-by-4 complex matrix. Take the block structure to be two 1-by-1 complex blocks and one 2-by-2 complex block.
```

rng(0,'twister')
M = randn(4,4) + sqrt(-1)*randn(4,4);
BlockStructure = [1 1;1 1;2 2];

```

You can calculate bounds on the structured singular value using the mussv command and extract the scaling matrices using mussvextract.
```

[bounds,muinfo] = mussv(M,BlockStructure);
[VDelta,VSigma,VLmi] = mussvextract(muinfo);

```

You can first verify the Newlin/Young upper bound with the information extracted from muinfo. The corresponding scalings are Dl and Dr.
```

Dl = VSigma.DLeft

```
Dl =
\begin{tabular}{rrrr}
1.0000 & 0 & 0 & 0 \\
0 & 0.7437 & 0 & 0 \\
0 & 0 & 1.0393 & 0 \\
0 & 0 & 0 & 1.0393
\end{tabular}
Dr = VSigma.DRight
Dr =
\begin{tabular}{rrrr}
1.0000 & 0 & 0 & 0 \\
0 & 0.7437 & 0 & 0 \\
0 & 0 & 1.0393 & 0 \\
0 & 0 & 0 & 1.0393
\end{tabular}
[norm(Dl*M/Dr) bounds(1)]
ans =
    \(6.2950 \quad 6.2950\)

You can first verify the LMI upper bound with the information extracted from muinfo. The corresponding scalings are Dr and Dc.
```

Dr = VLmi.Dr;
Dc = VLmi.Dc;
eig(M'*Dr*M - bounds(1)^2*Dc)
ans =
-0.0000 - 0.0000i
-17.7242 - 0.0000i
-33.8550 + 0.0000i

```
\(-41.2013-0.0000 i\)
Note that VDelta matches the structure defined by BlockStructure, and the norm of VDelta agrees with the lower bound,
```

VDelta
VDelta =

$0.1301-0.0922 i$	0	0	0
0	$-0.0121-0.1590 i$	0	0
0	0	$-0.0496-0.0708 i$	$0.1272-0.0075 i$
0	0	$0.0166-0.0163 i$	$0.0076+0.0334 i$

[norm(VDelta) 1/bounds(2)]
ans =
0.1595 0.1595

```
and that M*VDelta has an eigenvalue exactly at 1 .
```

eig(M*VDelta)
ans =
1.0000 - 0.0000i
-0.2501 - 0.1109i
0.0000 + 0.0000i
-0.3022 + 0.2535i

```

Keep the matrix the same, but change BlockStructure to be a 2 -by- 2 repeated, real scalar block and two complex 1-by-1 blocks. Run mussv with the ' \(C\) ' option to tighten the upper bound.
```

BlockStructure2 = [-2 0; 1 0; 1 0];
[bounds2,muinfo2] = mussv(M,BlockStructure2,'C');

```

You can compare the computed bounds. Note that bounds2 should be smaller than bounds, because the uncertainty set defined by BlockStructure2 is a proper subset of that defined by BlockStructure.
```

[bounds; bounds2]

```
ans =
```

6.2950 6.2704
5.1840 5.1750

```

You can extract the \(D, G\) and Delta from muinfo2 using mussvextract.
[VDelta2,VSigma2,VLmi2] = mussvextract(muinfo2);
As before, you can first verify the Newlin/Young upper bound with the information extracted from muinfo. The corresponding scalings are Dl, Dr, Gl, Gm and Gr.
```

Dl = VSigma2.DLeft;
Dr = VSigma2.DRight;
Gl = VSigma2.GLeft;
Gm = VSigma2.GMiddle;
Gr = VSigma2.GRight;
dmd = Dl*M/Dr/bounds2(1) - sqrt(-1)*Gm;
SL = (eye(4)+Gl*Gl)^-0.25;
SR = (eye(4)+Gr*Gr)^-0.25;
norm(SL*dmd*SR)
ans =
1.0000

```

You can first verify the LMI upper bound with the information extracted from muinfo. The corresponding scalings are Dr, Dc, Grc and Gcr.
```

Dr = VLmi2.Dr;
Dc = VLmi2.Dc;
Grc = VLmi2.Grc;
Gcr = VLmi2.Gcr;
eig(M'*Dr*M - bounds(1)^2 *Dc + j*(Gcr*M-M'*Grc))
ans =

```
    -69.9757 + 0.0000i
    -11.2139 - 0.0000i
    -19.2766 - 0.0000i
    -40.2869 - 0.0000i

VDelta2 matches the structure defined by BlockStructure, and the norm of VDelta2 agrees with the lower bound,
```

VDelta2

```
```

VDelta2 =
0.1932

0	0.1932
0	0
0	0

 0
 0
O
-0.1781 - 0.0750i
0
0
0
0
0.0941 + 0.1688i
[norm(VDelta2) 1/bounds2(2)]
ans =
0.1932 0.1932
and that M*VDelta2 has an eigenvalue exactly at 1.
eig(M*VDelta2)
ans =
1.0000 + 0.0000i
-0.4328 + 0.1586i
0.1220 - 0.2648i
-0.3688 - 0.3219i

```

\section*{See Also}
mussv

\section*{ncfmargin}

Calculate normalized coprime stability margin of plant-controller feedback loop

\section*{Syntax}
[marg,freq] \(=\) ncfmargin( \(P, C\) )
[marg,freq] = ncfmargin( \(P, C\), sign)
[marg,freq] = ncfmargin( \(P, C\), sign,tol)

\section*{Description}
[marg,freq] = ncfmargin( \(P, C\) ) returns the normalized coprime stability margin (also called the gap metric stability margin) of the multivariable feedback loop consisting of a controller, C, in negative feedback with a plant, P. This margin, marg, is achieved at the frequency freq. The normalized coprime stability margin is defined as:
\[
\left\|\left[\begin{array}{l}
I \\
C
\end{array}\right](I-P C)^{-1}\left[\begin{array}{ll}
P & I
\end{array}\right]\right\|_{\infty}^{-1}
\]

The calculation assumes the feedback structure of the following diagram:


The normalized coprime robust stability margin is an indication of robustness to unstructured perturbations. The value of the margin lies between 0 and 1. Values greater than 0.3 generally indicate good robustness margins.
[marg,freq] = ncfmargin( \(P, C\), sign) specifies the sign of the feedback connection assumed for the margin calculation. The default value, sign \(=-1\), specifies negative
feedback. Setting sign = +1 assumes a positive feedback connection for the margin calculation, as in the following diagram:

[marg,freq] = ncfmargin( \(P, C\), sign, tol) calculates the normalized coprime factor metric with the specified relative accuracy. tol is a scalar value between \(10^{-5}\) and \(10^{-2}\). The default value is tol \(=0.001\) ( \(0.1 \%\) accuracy) .

\section*{Examples}

Consider an unstable first-order plant, p, stabilized by high-gain and low-gain controllers, CL and cH .
```

p = tf(4,[1 -0.001]);
cL = 1;
cH = 10;

```

Compute the stability margin of the closed-loop system with the low-gain controller.
```

[margL,~] = ncfmargin(p,cL)

```
margL =

\subsection*{0.7069}

Similarly, compute the stability margin of the closed-loop system with the high-gain controller.
```

[margH,~] = ncfmargin(p,cH)

```
margH =
0.0995

The closed-loop systems with low-gain and high-gain controllers have normalized coprime stability margins of about 0.71 and 0.1 , respectively. This result indicates
that the closed-loop system with low-gain controller is more robust to unstructured perturbations than the system with the high-gain controller.

To observe this difference in robustness, construct an uncertain plant, punc, that has an additional \(11 \%\) unmodeled dynamics compared to the nominal plant.
```

punc = p + ultidyn('uncstruc',[1 1],'Bound',0.11);

```

Calculate the robust stability of the closed-loop systems formed by the uncertain plant and each controller.
```

[stabmargL,duL,reportL] = robuststab(feedback(punc,cL));
reportL
[stabmargH,duH,reportH] = robuststab(feedback(punc,cH));
reportH
reportL =
Uncertain system is robustly stable to modeled uncertainty.
-- It can tolerate up to 909% of the modeled uncertainty.
-- A destabilizing combination of 909% of the modeled uncertainty was found.
-- This combination causes an instability at 2e+03 rad/seconds.
-- Sensitivity with respect to the uncertain element is:
'uncstruc' is 100%. Increasing 'uncstruc' by 25% leads to a 25% decrease in the margin.
reportH =
Uncertain system is not robustly stable to modeled uncertainty.
-- It can tolerate up to 90.9% of the modeled uncertainty.
-- A destabilizing combination of 90.9% of the modeled uncertainty was found.
-- This combination causes an instability at 2e+04 rad/seconds.
-- Sensitivity with respect to the uncertain element is:
'uncstruc' is 100%. Increasing 'uncstruc' by 25% leads to a 25% decrease in the margin.

```

As expected, the robust stability analysis shows that the closed-loop system with lowgain controller is more robustly stable in the presence of the unmodeled LTI dynamics. In fact, this closed-loop system can tolerate \(909 \%\) (or \(9.09 * 11 \%\) ) of the unmodeled dynamics. In contrast, closed-loop system with the high-gain controller is not robustly stable. That closed-loop system can only tolerate \(90.9 \%\) (or \(0.909 * 11 \%\) ) of the unmodeled dynamics.

\section*{More About}

\section*{Algorithms}

The computation of the normalized coprime stability margin amounts to solving 2 -block \(H_{\infty}\) problems. [1] The function, ncfmargin, is based on [2].

\section*{References}
[1] Georgiou, T.T., "On the computation of the gap metric," Systems \& Control Letters, Vol. 11, No. 4, 1988, pp. 253-257.
[2] Green, M., Glover, K., D. Limebeer, and J.C. Doyle, "A J-spectral factorization approach to \(\mathrm{H}_{\infty}\) control," SIAM Journal on Control and Optimization, Vol. 28, No. 6, 1990, pp. 1350-1371.

\section*{See Also}
ncfsyn | loopmargin | gapmetric | wcmargin

\section*{ncfmr}

Balanced model truncation for normalized coprime factors

\section*{Syntax}
```

GRED = ncfmr(G)

```
GRED \(=\operatorname{ncfmr}(\mathrm{G}\), order)
[GRED, redinfo] \(=\operatorname{ncfmr}(G, k e y 1\), value1, ...)
[GRED,redinfo] \(=\operatorname{ncfmr}(G, o r d e r\), key1, value1, \(\ldots\) )

\section*{Description}
ncfmr returns a reduced order model GRED formed by a set of balanced normalized coprime factors and a struct array redinfo containing the left and right coprime factors of G and their coprime Hankel singular values.

Hankel singular values of coprime factors of such a stable system indicate the respective "state energy" of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's.

With only one input argument \(G\), the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

The left and right normalized coprime factors are defined as [1]
- Left Coprime Factorization: \(G=M_{l}^{-1}(s) N_{l}(s)\)
- Right Coprime Factorization: \(G=N_{r}(s) M_{r}^{-1}(s)\)
where there exist stable \(U_{r}(s), V_{r}(s), U_{l}(s)\) and \(V_{l}(s)\) such that
\[
\begin{aligned}
& U_{r} N_{r}+V_{r} M_{r}=I \\
& N_{l} U_{l}+M_{l} V_{l}=I
\end{aligned}
\]

The left/right coprime factors are stable, hence implies \(M_{r}(\mathrm{~s})\) should contain as RHPzeros all the RHP-poles of \(G(\mathrm{~s})\). The comprimeness also implies that there should be no
common RHP-zeros in \(N_{r}(\mathrm{~s})\) and \(M_{r}(\mathrm{~s})\), i.e., when forming \(G=N_{r}(s) M_{r}^{-1}(s)\), there should be no pole-zero cancellations.

This table describes input arguments for ncmfr.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline G & \begin{tabular}{l} 
LTI model to be reduced (without any other inputs will plot its \\
Hankel singular values and prompt for reduced order)
\end{tabular} \\
\hline ORDER & \begin{tabular}{l} 
(Optional) Integer for the desired order of the reduced model, or \\
optionally a vector packed with desired orders for batch runs
\end{tabular} \\
\hline
\end{tabular}

A batch run of a serial of different reduced order models can be generated by specifying order \(=x: y\), or a vector of integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system. The ncfmr method allows the original model to have \(j \omega\) axis singularities.
'MaxError' can be specified in the same fashion as an alternative for 'ORDER '. In this case, reduced order will be determined when the sum of the tails of the Hankel singular values reaches the 'MaxError'.
\begin{tabular}{|l|l|l|}
\hline Argument & Value & Description \\
\hline 'MaxError' & \begin{tabular}{l} 
A real number \\
or a vector of \\
different errors
\end{tabular} & \begin{tabular}{l} 
Reduce to achieve \(H_{\infty}\) error. \\
When present, 'MaxError' overides ORDER input.
\end{tabular} \\
\hline 'Display' & 'on' or 'off' & Display Hankel singular plots (default 'off'). \\
\hline 'Order' & \begin{tabular}{l} 
integer, vector or \\
cell array
\end{tabular} & \begin{tabular}{l} 
Order of reduced model. Use only if not specified as \\
2nd argument.
\end{tabular} \\
\hline
\end{tabular}

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase, and invertible.

This table describes output arguments.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline GRED & \begin{tabular}{l} 
LTI reduced order model, that becomes multi-dimensional array \\
when input is a serial of different model order array.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline REDINFO & A STRUCT array with 3 fields: \\
& - REDINFO.GL (left coprime factor) \\
& - REDINFO.GR (right coprime factor) \\
& • REDINFO.hsv (Hankel singular values) \\
\hline
\end{tabular}

G can be stable or unstable, continuous or discrete.

\section*{Examples}

Given a continuous or discrete, stable or unstable system, \(G\), the following commands can get a set of reduced order models based on your selections:
```

rng(1234,'twister');
G = rss(30,5,4); G.d = zeros(5,4);
[g1, redinfo1] = ncfmr(G); % display Hankel SV plot
% and prompt for order (try 15:20)
[g2, redinfo2] = ncfmr(G,20);
[g3, redinfo3] = ncfmr(G,[10:2:18]);
[g4, redinfo4] = ncfmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

```

\section*{More About}

\section*{Algorithms}

Given a state space \((A, B, C, D)\) of a system and \(k\), the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the \(k^{\text {th }}\) order reduced model.

1 Find the normalized coprime factors of \(G\) by solving Hamiltonian described in [1].
\[
\begin{aligned}
G_{l} & =\left[\begin{array}{ll}
N_{l} & M_{l}
\end{array}\right] \\
G_{r} & =\left[\begin{array}{l}
N_{r} \\
M_{r}
\end{array}\right]
\end{aligned}
\]

2 Perform \(k^{\text {th }}\) order square root balanced model truncation on \(G_{l}\) (or \(G_{r}\) ) [2].
3 The reduced model GRED is:
\[
\left[\begin{array}{c|c}
\hat{A} & \hat{B} \\
\hline \hat{C} & \hat{D}
\end{array}\right]=\left[\begin{array}{c|c}
A_{c}-B_{m} C_{l} & B_{n}-B_{m} D_{l} \\
\hline C_{l} & D_{l}
\end{array}\right]
\]
where
\(N_{l}\left(:=A_{c}, B_{n}, C_{c}, D_{n}\right)\)
\[
\begin{aligned}
& M_{l}:=\left(A_{c}, B_{m}, C_{c}, D_{m}\right) \\
& C_{l}=\left(D_{m}\right)^{-1} C_{c} \\
& D_{l}=\left(D_{m}\right)^{-1} D_{n}
\end{aligned}
\]

\section*{References}
[1] M. Vidyasagar. Control System Synthesis - A Factorization Approach. London: The MIT Press, 1985.
[2] M. G. Safonov and R. Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.

\section*{See Also}
reduce | balancmr | bstmr | schurmr | hankelmr | hankelsv

\section*{ncfsyn}

Loop shaping design using Glover-McFarlane method

\section*{Syntax}
\[
\begin{aligned}
& {[\mathrm{K}, \mathrm{CL}, \mathrm{GAM}, \mathrm{INFO}]=\operatorname{ncfsyn}(\mathrm{G})} \\
& {[\mathrm{K}, \mathrm{CL}, \mathrm{GAM}, \mathrm{INFO}]=\mathrm{ncfsyn}(\mathrm{G}, \mathrm{~W} 1)} \\
& {[\mathrm{K}, \mathrm{CL}, \mathrm{GAM}, \mathrm{INFO}]=\mathrm{ncfsyn}(\mathrm{G}, \mathrm{~W} 1, \mathrm{~W} 2)} \\
& {[\mathrm{K}, \mathrm{CL}, \mathrm{GAM}, \mathrm{INFO}]=\mathrm{ncfsyn}\left(\mathrm{G}, \mathrm{~W} 1, \mathrm{~W} 2, \text { 'ref' }^{\prime}\right)}
\end{aligned}
\]

\section*{Description}
ncfsyn is a method for designing controllers that uses a combination of loop shaping and robust stabilization as proposed in McFarlane and Glover [1]-[2]. The first step is for you to select a pre- and post-compensator \(W_{1}\) and \(W_{2}\), so that the gain of the 'shaped plant' \(G_{s}:=W_{2} G W_{1}\) is sufficiently high at frequencies where good disturbance attenuation is required and is sufficiently low at frequencies where good robust stability is required. The second step is to use ncfsyn to compute an optimal positive feedback controllers K.

The optimal Ks has the property that the sigma plot of the shaped loop
```

Ls=W2*G*W1*Ks

```
matches the target loop shape \(G_{s}\) optimally, roughly to within plus or minus 20*log10(GAM) db. The number margin GAM=1/ncfmargin(Gs,K) and is always greater than 1. GAM gives a good indication of robustness of stability to a wide class of unstructured plant variations, with values in the range \(1<\mathrm{GAM}<3\) corresponding to satisfactory stability margins for most typical control system designs.
[K, CL , GAM, INFO]=ncfsyn (G, W1, W2, 'ref') computes the Glover-McFarlane \(H_{\infty}\) normalized coprime factor loop-shaping controller K, with a reference command, for lti plant G, weights W1 and W2 if the 'ref ' option is included. The closed-loop system CL represents the transfer matrix from the reference and disturbance to the feedback error and output of W1.

\section*{Examples}

\section*{Loop Shaping With ncfsyn}

The following code shows how ncfsyn can be used for loop-shaping.
```

s = zpk('s');
G = (s-1)/(s+1)^2;
W1 = 0.5/s;
[K,CL,GAM] = ncfsyn(G,W1);
sigma(G*K,'r',G*W1,'r-.',G*W1*GAM,'k-.',G*W1/GAM,'k-.')

```


The singular value plot of the achieved loop \(G * K\) is equal to that of the target loop \(G * W 1\) to within plus or minus GAM (in dB ).

\section*{More About}

\section*{Algorithms}
\(\mathrm{K}=\mathrm{W} 2 * \mathrm{Ks} * \mathrm{~W} 1\), where \(\mathrm{Ks}=K_{\infty}\) is an optimal \(H_{\infty}\) controller that simultaneously minimizes the two \(H_{\infty}\) cost functions
\[
\begin{aligned}
& \gamma:=\min _{K}\left\|\left[\begin{array}{c}
I \\
K
\end{array}\right]\left(I-G_{s} K\right)^{-1}[G s, I]\right\|_{\infty} \\
& \gamma:=\min _{K}\left\|\left[\begin{array}{c}
I \\
G_{s}
\end{array}\right]\left(I-K G_{s}\right)^{-1}[K, I]\right\|_{\infty}
\end{aligned}
\]

Roughly speaking, this means for most plants that \(\sigma\left(W_{2} G W_{1} K_{\infty}\right), \mathrm{db}=\sigma\left(W_{2} G W_{1}\right), \mathrm{db} \pm \gamma, \mathrm{db}\) \(\sigma\left(K_{\infty} W_{2} G W_{1}\right), \mathrm{db}=\sigma\left(W_{2} G W_{1}\right), \mathrm{db} \pm \gamma, \mathrm{db}\),
so you can use the weights \(W_{1}\) and \(W_{2}\) for loopshaping. For a more precise bounds on loopshaping accuracy, see Theorem 16.12 of Zhou and Glover.

Theory ensures that if \(G_{s}=N M^{-1}\) is a normalized coprime factorization (NCF) of the weighted plant model \(G_{s}\) satisfying
\(G_{s}=N(j w)^{*} N(j w)+M(j w) * M(j w)=I\),
then the control system will remain robustly stable for any perturbation \(\tilde{G}_{s}\) to the weighted plant model \(G_{s}\) that can be written
\[
\tilde{G}_{s}=\left(N+\Delta_{1}\right)\left(M+\Delta_{2}\right)^{-1}
\]
for some stable pair \(\Delta_{1}, \Delta_{2}\) satisfying
\[
\left\|\left[\begin{array}{l}
\Delta_{1} \\
\Delta_{2}
\end{array}\right]\right\|_{\infty}<M A R G:=1 / G A M
\]

The closed-loop \(H_{\infty}\)-norm objective has the standard signal gain interpretation. Finally it can be shown that the controller, \(K_{\infty}\), does not substantially affect the loop shape in frequencies where the gain of \(W_{2} G W_{1}\) is either high or low, and will guarantee satisfactory stability margins in the frequency region of gain cross-over. In the regulator set-up, the final controller to be implemented is \(K=W_{1} K_{\infty} W_{2}\).

\section*{Input Arguments}
\begin{tabular}{|l|l|}
\hline G & LTI plant to be controlled \\
\hline W1 , W2 & \begin{tabular}{l} 
Stable minimum-phase LTI weights, either SISO or MIMO. \\
Default is \(W_{1}=I, W_{2}=I\)
\end{tabular} \\
\hline 'ref' & \begin{tabular}{l} 
Reference input to controller. Default is no reference input is \\
included.
\end{tabular} \\
\hline
\end{tabular}

\section*{Output Arguments}
\begin{tabular}{|l|l|}
\hline K & LTI controller K= W1 *Ks*W2 \\
\hline CL & {\(\left[\begin{array}{c}I \\
K_{\infty}\end{array}\right]\left(I-W_{2} G W_{1} K_{\infty}\right)^{-1}\left[W_{2} G W_{1}, I\right]\), LTI \(H_{\infty}\) optimal closed loop } \\
\hline GAM & \(H_{\infty}\) optimal cost \(\frac{1}{b\left(W_{2} G W_{1}, K_{\infty}\right)}=\operatorname{hinfnorm}(\mathrm{CL}) \geq 1\) \\
\hline INFO & Structure array containing additional information \\
\hline
\end{tabular}

Additional output INFO fields
\begin{tabular}{|l|l|}
\hline INFO.emax & \begin{tabular}{l} 
nugap robustness emax=1/GAM=ncfmargin (Gs , -Ks \()=b\left(W_{2} G W_{1}\right.\), \\
\(\left.K_{\infty}\right)\)
\end{tabular} \\
\hline INFO.Gs & 'shaped plant' Gs=W2*G*W1 \\
\hline INFO.Ks & \(\mathrm{Ks}=\) K[[BULLET]] = NCFSYN(Gs) = NCFSYN(W2*G*W1) \\
\hline
\end{tabular}
[MARG,FREQ] = ncfmargin(G,K,TOL) calculates the normalized coprime factor/gap metric robust stability margin assuming negative feedback.
\[
\operatorname{MARG}=b(G,-K)=1 /\left\|\left[\begin{array}{c}
I \\
-K
\end{array}\right](I+G K)^{-1}[G, I]\right\|_{\infty}
\]
where G and K are LTI plant and controller, and TOL (default=.001) is the tolerance used to compute the \(H_{\infty}\) norm. FREQ is the peak frequency. That is, the frequency at which the infinity norm is reached to within TOL.

\section*{Algorithms}

See McFarlane and Glover [1]-[2] for details.

\section*{References}
[1] McFarlane, D.C., and K. Glover, Robust Controller Design using Normalised Coprime Factor Plant Descriptions, Springer Verlag, Lecture Notes in Control and Information Sciences, vol. 138, 1989.
[2] McFarlane, D.C., and K. Glover, "A Loop Shaping Design Procedure using Synthesis," IEEE Transactions on Automatic Control, vol. 37, no. 6, pp. 759-769, June 1992.
[3] Vinnicombe, G., "Measuring Robustness of Feedback Systems," PhD dissertation, Department of Engineering, University of Cambridge, 1993.
[4] Zhou, K., and J.C. Doyle, Essentials of Robust Control. NY: Prentice-Hall, 1998.

\section*{See Also}
gapmetric | hinfsyn | loopsyn | ncfmargin

\section*{newlmi}

Attach identifying tag to LMIs

\section*{Syntax}
```

tag = newlmi

```

\section*{Description}
newlmi adds a new LMI to the LMI system currently described and returns an identifier tag for this LMI. This identifier can be used in lmiterm, showlmi, or dellmi commands to refer to the newly declared LMI. Tagging LMIs is optional and only meant to facilitate code development and readability.

Identifiers can be given mnemonic names to help keep track of the various LMIs. Their value is simply the ranking of each LMI in the system (in the order of declaration). They prove useful when some LMIs are deleted from the LMI system. In such cases, the identifiers are the safest means of referring to the remaining LMIs.
```

See Also
setlmis | lmivar | lmiterm | getlmis | lmiedit | dellmi

```

\section*{normalized2actual}

Convert value for atom in normalized coordinates to corresponding actual value

\section*{Syntax}
```

avalue = normalized2actual(A,NV)

```

\section*{Description}

Converts a normalized value NV of an atom to its corresponding actual (unnormalized) value.

If \(N V\) is an array of values, then avalue will be an array of the same dimension.

\section*{Examples}

Create uncertain real parameters with a range that is symmetric about the nominal value, where each endpoint is 1 unit from the nominal. Points that lie inside the range are less than 1 unit from the nominal, while points that lie outside the range are greater than 1 unit from the nominal.
```

a = ureal('a',3,'range',[1 5]);
actual2normalized(a,[1 3 5])
ans =
-1.0000 -0.0000 1.0000
normalized2actual(a,[-1 1])
ans =
1.0000 5.0000
normalized2actual(a,[-1.5 1.5])
ans =
0.0000 6.0000

```

\section*{See Also}
actual2normalized | robuststab | robustperf

\section*{pdlstab}

Assess robust stability of polytopic or parameter-dependent system

\section*{Syntax}
[tau, Q0, Q1,...] = pdlstab(pds,options)

\section*{Description}
pdlstab uses parameter-dependent Lyapunov functions to establish the stability of uncertain state-space models over some parameter range or polytope of systems. Only sufficient conditions for the existence of such Lyapunov functions are available in general. Nevertheless, the resulting robust stability tests are always less conservative than quadratic stability tests when the parameters are either time-invariant or slowly varying.

For an affine parameter-dependent system
\(E(p) x=A(p) x+B(p) u\)
\(y=C(p) x+D(p) u\)
with \(p=\left(p_{1}, \ldots, p_{n}\right) \in R^{n}\), pdlstab seeks a Lyapunov function of the form
\(V(x p)=,x^{T} Q(p)-1 x, Q(p)=Q_{0}+p_{1} Q_{1}+\ldots p_{n} Q_{n}\)
such that \(d V(x, p) / d t<0\) along all admissible parameter trajectories. The system description pds is specified with psys and contains information about the range of values and rate of variation of each parameter \(p_{i}\).

For a time-invariant polytopic system
\(E x=A x+B u\)
\(y=C x+D u\)
with
\[
\left(\begin{array}{cc}
A+j E & B \\
C & D
\end{array}\right)=\sum_{i=1}^{n} \alpha_{i}\left(\begin{array}{cc}
A+j E_{i} & B_{i} \\
C_{i} & D_{i}
\end{array}\right), \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i}=1
\]
pdlstab seeks a Lyapunov function of the form
\(V(x, \mathrm{\alpha})=x^{T} Q(\alpha)-1 x, Q(\alpha)=\alpha_{1} Q_{1}+\ldots+\alpha_{n} Q_{n}\)
such that \(d V(x, \mathrm{a}) / d t<0\) for all polytopic decompositions of the form Equation 1-17.
Several options and control parameters are accessible through the optional argument options:
- Setting options(1)=0 tests robust stability (default)
- When options (2) \(=0\), pdlstab uses simplified sufficient conditions for faster running times. Set options (2) \(=1\) to use the least conservative conditions

\section*{More About}

\section*{Tips}

For affine parameter-dependent systems with time-invariant parameters, there is equivalence between the robust stability of
\[
E(p) \dot{x}=A(p) x
\]
and that of the dual system
\[
E(p)^{T} \dot{z}=A(p)^{T} z
\]

However, the second system may admit an affine parameter-dependent Lyapunov function while the first does not.

In such case, pdlstab automatically restarts and tests stability on the dual system Equation 1-19 when it fails on Equation 1-18.

\author{
See Also \\ quadstab
}

\section*{pdsimul}

Time response of parameter-dependent system along given parameter trajectory

\section*{Syntax}
```

pdsimul(pds,'traj',tf,'ut',xi,options)

```
[t,x,y] = pdsimul(pds,pv,'traj',tf,'ut',xi,options)

\section*{Description}
pdsimul simulates the time response of an affine parameter-dependent system
\[
\begin{gathered}
E(p) x=A(p) x+B(p) u \\
y=C(p) x+D(p) u
\end{gathered}
\]
along a parameter trajectory \(p(t)\) and for an input signal \(u(t)\). The parameter trajectory and input signals are specified by two time functions \(p=t r a j(t)\) and \(u=u t(t)\). If 'ut' is omitted, the response to a step input is computed by default.

The affine system pds is specified with psys. The function pdsimul also accepts the polytopic representation of such systems as returned by aff2pol(pds) or hinfgs. The final time and initial state vector can be reset through tf and xi (their respective default values are 5 seconds and 0). Finally, options gives access to the parameters controlling the ODE integration (type help gear for details).

When invoked without output arguments, pdsimul plots the output trajectories \(y(t)\). Otherwise, it returns the vector of integration time points \(t\) as well as the state and output trajectories \(\mathrm{x}, \mathrm{y}\).

\author{
See Also \\ psys | pvec
}

\section*{polydec}

Compute polytopic coordinates with respect to box corners

\section*{Syntax}
vertx = polydec(PV)
[C,vertx] = polydec(PV,P)

\section*{Description}
vertx = polydec(PV) takes an uncertain parameter vector PV taking values ranging in a box, and returns the corners or vertices of the box as columns of the matrix vertx.
\([C\), vertx] \(=\) polydec (PV, \(P)\) takes an uncertain parameter vector \(P V\) and a value \(P\) of the parameter vector PV , and returns the convex decomposition \(C\) of \(P\) over the set VERTX of box corners:
```

P = c1*VERTX(:,1) + ... + cn*VERTX(:,n)
cj >=0, c1 + ... + cn = 1

```

The list vertx of corners can be obtained directly by typing
vertx = polydec(PV)

\author{
See Also \\ pvec | pvinfo | aff2pol| hinfgs
}

\section*{popov}

\author{
Perform Popov robust stability test
}

\section*{Syntax}
[t,P,S,N] = popov(sys,delta,flag)

\section*{Description}
popov uses the Popov criterion to test the robust stability of dynamical systems with possibly nonlinear and/or time-varying uncertainty. The uncertain system must be described as the interconnection of a nominal LTI system sys and some uncertainty delta.

The command
[t,P,S,N] = popov(sys,delta)
tests the robust stability of this interconnection. Robust stability is guaranteed if \(\mathrm{t}<0\). Then P determines the quadratic part \(x^{T} P x\) of the Lyapunov function and D and S are the Popov multipliers.

If the uncertainty delta contains real parameter blocks, the conservatism of the Popov criterion can be reduced by first performing a simple loop transformation. To use this refined test, call popov with the syntax
[t,P,S,N] = popov(sys,delta,1)

\section*{See Also}
quadstab | pdlstab

\section*{psinfo}

Inquire about polytopic or parameter-dependent systems created with psys

\section*{Syntax}
```

psinfo(ps)
[type,k,ns,ni,no] = psinfo(ps)
pv = psinfo(ps,'par')
sk = psinfo(ps,'sys',k)
sys = psinfo(ps,'eval',p)

```

\section*{Description}
psinfo is a multi-usage function for queries about a polytopic or parameter-dependent system ps created with psys. It performs the following operations depending on the calling sequence:
- psinfo(ps) displays the type of system (affine or polytopic); the number \(k\) of SYSTEM matrices involved in its definition; and the numbers of ns, ni, no of states, inputs, and outputs of the system. This information can be optionally stored in MATLAB variables by providing output arguments.
- \(p v=p s i n f o(p s, ' p a r ')\) returns the parameter vector description (for parameterdependent systems only).
- sk = psinfo(ps,'sys',k) returns the \(k\)-th SYSTEM matrix involved in the definition of \(p s\). The ranking \(k\) is relative to the list of systems syslist used in psys.
- sys = psinfo(ps, 'eval', p ) instantiates the system for a given vector \(p\) of parameter values or polytopic coordinates.

For affine parameter-dependent systems defined by the SYSTEM matrices \(S_{0}, S_{1}, \ldots\), \(S_{n}\), the entries of p should be real parameter values \(p_{1}, \ldots, p_{n}\) and the result is the LTI system of SYSTEM matrix
\(S(p)=S_{0}+p_{1} S_{1}+\ldots+p_{n} S_{n}\)

For polytopic systems with SYSTEM matrix ranging in \(\operatorname{Co}\left\{S_{1}, \ldots, S_{n}\right\}\),
the entries of p should be polytopic coordinates \(p_{1}, \ldots, p_{n}\) satisfying \(p_{j} \geq 0\) and the result is the interpolated LTI system of SYSTEM matrix
\[
S=\frac{p_{1} S_{1}+\cdots+p_{n} S_{n}}{p_{1}+\cdots+p_{n}}
\]

\section*{See Also}
psys

\section*{psys}

Specify polytopic or parameter-dependent linear systems

\section*{Syntax}
```

pols = psys(syslist)
affs = psys(pv,syslist)

```

\section*{Description}
psys specifies state-space models where the state-space matrices can be uncertain, time-varying, or parameter-dependent.
psys supports two types of uncertain state-space models:
- Polytopic systems
\(E(t) x=A(t) x+B(t) u\)
\(y=C(t) x+D(t) u\)
whose SYSTEM matrix takes values in a fixed polytope:
\[
\underbrace{\left[\begin{array}{cc}
A(t)+j E(t) & B(t) \\
C(t) & D(t)
\end{array}\right]}_{S(t)} \in \mathrm{Co}\{\underbrace{\left[\begin{array}{cc}
A_{1}+j E_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]}_{S_{1}}, \ldots, \underbrace{\left[\begin{array}{cc}
A k+j E_{k} & B_{k} \\
C_{k} & D_{k}
\end{array}\right]}_{S_{k}}\}
\]
where \(S_{1}, \ldots, S_{k}\) are given "vertex" systems and
\[
\operatorname{Co}\left\{S_{1}, \ldots, S_{k}\right\}=\left\{\sum_{i=1}^{k} \alpha_{i} S_{i}: \alpha_{i} \geq 0, \sum_{i=1}^{k} \alpha_{i}=1\right\}
\]
denotes the convex hull of \(S_{1}, \ldots, S_{k}\) (polytope of matrices with vertices \(S_{1}, \ldots, S_{k}\) )
- Affine parameter-dependent systems
\(E(p) x=A(p) x+B(p) u\)
\(y=C(p) x+D(p) u\)
where \(A(\cdot) ; B(\cdot), \ldots, E(\cdot)\) are fixed affine functions of some vector \(p=\left(p_{1}, \ldots, p_{n}\right)\) of real parameters, i.e.,
\[
\begin{aligned}
& \underbrace{\left[\begin{array}{cc}
A(p)+j E(p) & B(p) \\
C(p) & D(p)
\end{array}\right]}_{S(p)}= \\
& \underbrace{\left[\begin{array}{cc}
A_{0}+j E_{0} & B_{0} \\
C_{0} & D_{0}
\end{array}\right]}_{S_{0}}+p 1 \underbrace{\left[\begin{array}{cc}
A_{1}+j E_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right]}_{S_{1}}+\ldots+p_{n} \underbrace{\left[\begin{array}{cc}
A_{n}+j E_{n} & B_{n} \\
C_{n} & D_{n}
\end{array}\right]}_{S_{n}}
\end{aligned}
\]
where \(S_{0}, S_{1}, \ldots, S_{n}\) are given SYSTEM matrices. The parameters \(p_{i}\) can be timevarying or constant but uncertain.

The argument syslist lists the SYSTEM matrices \(S_{i}\) characterizing the polytopic value set or parameter dependence. In addition, the description \(p v\) of the parameter vector (range of values and rate of variation) is required for affine parameter- dependent models (see pvec for details). Thus, a polytopic model with vertex systems \(S_{1}, \ldots, S_{4}\) is created by
pols \(=\operatorname{psys}([s 1, s 2, s 3, s 4])\)
while an affine parameter-dependent model with 4 real parameters is defined by
```

affs = psys(pv,[s0,s1,s2,s3,s4])

```

The output is a structured matrix storing all the relevant information.

\author{
See Also \\ psinfo | pvec | aff2pol
}

\section*{pvec}

Specify range and rate of variation of uncertain or time-varying parameters

\section*{Syntax}
```

pv = pvec('box',range,rates)
pv = pvec('pol',vertices)

```

\section*{Description}
pvec is used in conjunction with psys to specify parameter-dependent systems. Such systems are parametrized by a vector \(p=\left(p_{1}, \ldots, p_{n}\right)\) of uncertain or time-varying real parameters \(p_{\mathrm{i}}\). The function pvec defines the range of values and the rates of variation of these parameters.

The type 'box' corresponds to independent parameters ranging in intervals
\[
\underline{p}_{j} \leq p_{j} \leq \bar{p}_{j}
\]

The parameter vector \(p\) then takes values in a hyperrectangle of \(R^{n}\) called the parameter box. The second argument range is an \(n\)-by- 2 matrix that stacks up the extremal values \(\underline{p}_{j}\) and \(\bar{p}_{j}\) of each \(p_{j}\). If the third argument rates is omitted, all parameters are assumed time-invariant. Otherwise, rates is also an \(n\)-by- 2 matrix and its \(j\)-th row specifies lower and upper bounds \(\underline{v}_{j}\) and \(\bar{v}_{j}\) on \(\frac{d p_{j}}{d t}\) :
\[
\underline{v}_{j} \leq \frac{d p_{j}}{d t} \leq \bar{v}_{j}
\]

Set \(\underline{v}_{j}=-\) Inf and \(\bar{v}_{j}=\operatorname{Inf}\) if \(p_{j}(t)\) can vary arbitrarily fast or discontinuously.

The type 'pol' corresponds to parameter vectors \(p\) ranging in a polytope of the parameter space \(R^{n}\). This polytope is defined by a set of vertices \(V_{1}, \ldots, V_{n}\) corresponding to "extremal" values of the vector \(p\). Such parameter vectors are declared by the command
```

pv = pvec('pol',[v1,v2, . . ., vn])

```
where the second argument is the concatenation of the vectors \(\mathrm{v} 1, \ldots, \mathrm{vn}\).
The output argument \(p v\) is a structured matrix storing the parameter vector description. Use pvinfo to read the contents of \(p v\).

\section*{Examples}

Consider a problem with two time-invariant parameters
\(p_{1} \in[-1,2], p_{2} \in[20,50]\)
The corresponding parameter vector \(p=\left(p_{1}, p_{2}\right)\) is specified by
```

pv = pvec('box',[-1 2;20 50])

```

Alternatively, this vector can be regarded as taking values in the rectangle drawn in the following figure. The four corners of this rectangle are the four vectors
\[
v_{1}=\binom{-1}{20}, v_{2}=\binom{-1}{50}, v_{3}=\binom{2}{20}, v_{4}=\binom{2}{50}
\]

Hence, you could also specify \(p\) by
```

pv = pvec('pol',[v1,v2,v3,v4])

```


\section*{Parameter box}

\section*{See Also \\ pvinfo | psys}

\section*{pvinfo}

Describe parameter vector specified with pvec

\section*{Syntax}
```

[typ,k,nv] = pvinfo(pv)
[pmin,pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
vj = pvinfo(pv,'par',j)
p = pvinfo(pv,'eval',c)

```

\section*{Description}
pvinfo retrieves information about a vector \(p=\left(p_{1}, \ldots, p_{n}\right)\) of real parameters declared with pvec and stored in pv . The command \(\mathrm{pvinfo}(\mathrm{pv})\) displays the type of parameter vector ('box' or 'pol'), the number \(n\) of scalar parameters, and for the type 'pol', the number of vertices used to specify the parameter range.

For the type 'box':
[pmin, pmax,dpmin,dpmax] = pvinfo(pv,'par',j)
returns the bounds on the value and rate of variations of the j -th real parameter \(p_{j}\). Specifically,
\[
p \min \leq p_{j}(t) \leq p \max , d p \min \leq \frac{d p_{j}}{d t} \leq d p \max
\]

For the type 'pol':
pvinfo(pv,'par',j)
returns the \(j\)-th vertex of the polytope of \(R^{n}\) in which \(p\) ranges, while
pvinfo(pv,'eval', c)
returns the value of the parameter vector \(p\) given its barycentric coordinates C with respect to the polytope vertices \(\left(V_{1}, \ldots, V_{k}\right)\). The vector c must be of length \(k\) and have nonnegative entries. The corresponding value of \(p\) is then given by
\[
p=\frac{\sum_{i=1}^{k} c_{i} V_{i}}{\sum_{i=1}^{k} c_{i}}
\]

\section*{See Also}
pvec | psys

\section*{quadperf}

Compute quadratic \(H_{\infty}\) performance of polytopic or parameter-dependent system

\section*{Syntax}
[perf,P] = quadperf(ps,g,options)

\section*{Description}

The RMS gain of the time-varying system
\[
E(t) \dot{x}=A(t) x+B(t) u, \quad y=C(t) X+D(t) u
\]
is the smallest \(\gamma>0\) such that
\[
\|y\|_{L_{2}} \leq \gamma\|u\|_{L_{2}}
\]
for all input \(u(t)\) with bounded energy. A sufficient condition for Equation 1-21 is the existence of a quadratic Lyapunov function
\(\mathrm{V}(x)=x^{T} P x, P>0\)
such that
\[
\forall u \in L_{2}, \frac{d V}{d t}+y^{T} y-\gamma^{2} u^{T} u<0
\]

Minimizing \(\gamma\) over such quadratic Lyapunov functions yields the quadratic \(H_{\infty}\) performance, an upper bound on the true RMS gain.

The command
[perf,P] = quadperf(ps)
computes the quadratic \(H_{\infty}\) performance perf when Equation 1-20 is a polytopic or affine parameter-dependent system ps (see psys). The Lyapunov matrix \(P\) yielding the performance perf is returned in \(P\).

The optional input options gives access to the following task and control parameters:
- If options (1)=1, perf is the largest portion of the parameter box where the quadratic RMS gain remains smaller than the positive value \(g\) (for affine parameterdependent systems only). The default value is 0 .
- If options(2)=1, quadperf uses the least conservative quadratic performance test. The default is options (2) \(=0\) (fast mode)
- options (3) is a user-specified upper bound on the condition number of \(P\) (the default is 109).

\author{
See Also \\ quadstab | psys
}

\section*{quadstab}

Quadratic stability of polytopic or affine parameter-dependent systems

\section*{Syntax}
[tau,P] = quadstab(ps,options)

\section*{Description}

For affine parameter-dependent systems
\(E(p) x=A(p) x, p(t)=\left(p_{1}(t), \ldots, p_{n}(t)\right)\)
or polytopic systems
\(E(t) x=A(t) x,(A, E) \in \operatorname{Co}\left\{\left(A_{1}, E_{1}\right), \ldots,\left(A_{n}, E_{n}\right)\right\}\),
quadstab seeks a fixed Lyapunov function \(\mathrm{V}(x)=x^{T} P x\) with \(P>0\) that establishes quadratic stability. The affine or polytopic model is described by ps (see psys).

The task performed by quadstab is selected by options(1):
- if options (1)=0 (default), quadstab assesses quadratic stability by solving the LMI problem

Minimize \(\tau\) over \(Q=Q^{T}\) such that
\(A^{T} Q E+E Q A^{T}<\tau I\) for all admissible values of \((A, E)\)
\(Q>I\)
The global minimum of this problem is returned in tau and the system is quadratically stable if tau \(<0\).
- if options(1)=1, quadstab computes the largest portion of the specified parameter range where quadratic stability holds (only available for affine models). Specifically, if each parameter \(p_{i}\) varies in the interval
\[
p_{i} \in\left[p_{i 0}-\delta_{i}, p_{i 0}+\delta_{i}\right],
\]
quadstab computes the largest \(\Theta>0\) such that quadratic stability holds over the parameter box
\[
p_{i} \in\left[p_{i 0}-\Theta \delta_{i}, p_{i 0}+\Theta \delta_{i}\right]
\]

This "quadratic stability margin" is returned in tau and ps is quadratically stable if \(t a u \geq 1\).

Given the solution \(Q_{\text {opt }}\) of the LMI optimization, the Lyapunov matrix \(P\) is given by \(P=\) \(Q_{o p t}^{-1}\). This matrix is returned in \(P\).

Other control parameters can be accessed through options(2) and options(3):
- if options (2) \(=0\) (default), quadstab runs in fast mode, using the least expensive sufficient conditions. Set options (2) =1 to use the least conservative conditions
- options (3) is a bound on the condition number of the Lyapunov matrix \(P\). The default is \(10^{9}\).

\section*{See Also}
pdlstab | psys | decay | quadperf

\section*{randatom}

Generate random uncertain atom objects

\section*{Syntax}

A = randatom(Type)
A = randatom(Type,sz)
A = randatom

\section*{Description}

A = randatom(Type) generates a 1-by-1 type uncertain object. Valid values for Type include 'ureal', 'ultidyn', 'ucomplex', and 'ucomplexm'.

A = randatom(Type,sz) generates an sz(1)-by-sz(2) uncertain object. Valid values for Type include 'ultidyn' or 'ucomplexm'. If Type is set to 'ureal' or ' ucomplex', the size variable is ignored and A is a 1-by-1 uncertain object.

A = randatom, where randatom has no input arguments, results in a 1-by-1 uncertain object. The class is of this object is randomly selected between 'ureal', 'ultidyn' and 'ucomplex'.

In general, both rand and randn are used internally. You can control the result of randatom by setting seeds for both random number generators before calling the function.

\section*{Examples}

The following statement creates the ureal uncertain object xr. Note that your display can differ because a random seed is used.
```

xr = randatom('ureal')
xr =
Uncertain real parameter "NMGXC" with nominal value 5.34 and variability [-2.99,1.92].

```

The following statement creates the variable ultidyn uncertain object xlti with three inputs and four outputs. You will get the results shown below if you set the random variable seed to 29 .
```

rng(29,'twister');

```
xlti = randatom('ultidyn',[4 3])
xlti =
Uncertain LTI dynamics "LOSWT" with 4 outputs, 3 inputs, and gain less than 0.293 .

\section*{See Also}
rand | randn | randumat | randuss | ucomplex | ucomplexm | ultidyn

\section*{randumat}

Generate random uncertain umat objects

\section*{Syntax}
```

um = randumat(ny,nu)
um = randumat

```

\section*{Description}
um = randumat ( \(n y, n u\) ) generates an uncertain matrix of size ny-by-nu. randumat randomly selects from uncertain atoms of type 'ureal', 'ultidyn', and 'ucomplex'.
um = randumat results in a 1-by-1 umat uncertain object, including up to four uncertain objects.

\section*{Examples}

The following statement creates the umat uncertain object \(x 1\) of size 2 -by- 3 . Note that your result can differ because a random seed is used.
```

x1 = randumat (2,3)
x1 =
Uncertain matrix with 2 rows and 3 columns.
The uncertainty consists of the following blocks:
AWYRT: Uncertain real, nominal $=7.09$, variability $=[-7.84,16.4] \%$, 2 occurrences
HRRED: Uncertain complex, nominal $=3.14+5.47 i$, radius $=1.92,1$ occurrences
VSIYA: Uncertain real, nominal $=-4.05$, variability $=[-1.53,3.83]$, 3 occurrences
YZEZY: Uncertain complex, nominal $=-6.54-2.17 i$, variability $=24 \%$, 1 occurrences
Type "x1.NominalValue" to see the nominal value, "get(x1)" to see all properties, and
"x1.Uncertainty" to interact with the uncertain elements.

```

The following statement creates the umat uncertain object x2 of size 4 -by- 2 with the seed 91.
rng(91,'twister');
x2 = randumat(4,2)
```

x2 =
Uncertain matrix with 4 rows and 2 columns.
The uncertainty consists of the following blocks:
YQZBI: Uncertain complex, nominal = 3.61+1.88i, radius = 1.42, 1 occurrences
Type "x2.NominalValue" to see the nominal value, "get(x2)" to see all properties,
and "x2.Uncertainty" to interact with the uncertain elements.

```

\section*{See Also}
rand | randn | randatom | randuss | ucomplex | ultidyn

\section*{randuss}

Generate stable, random uss objects

\section*{Syntax}
```

usys = randuss(n)
usys = randuss(n,p)
usys = randuss(n,p,m)
usys = randuss(n,p,m,Ts)
usys = randuss

```

\section*{Description}
usys = randuss( n ) generates an \(n\)th order single-input/single-output uncertain continuous-time system. randuss randomly selects from uncertain atoms of type 'ureal', 'ultidyn', and 'ucomplex'.
usys = randuss ( \(\mathrm{n}, \mathrm{p}\) ) generates an n th order single-input uncertain continuous-time system with \(p\) outputs.
usys \(=\) randuss ( \(n, p, m\) ) generates an \(n\)th order uncertain continuous-time system with \(p\) outputs and \(m\) inputs.
usys \(=\) randuss \((\mathrm{n}, \mathrm{p}, \mathrm{m}, \mathrm{Ts})\) generates an nth order uncertain discrete-time system with \(p\) outputs and \(m\) inputs. The sample time is Ts.
usys = randuss (without arguments) results in a 1-by-1 uncertain continuous-time uss object with up to four uncertain objects.

In general, both rand and randn are used internally. You can control the result of randuss by setting seeds for both random number generators before calling the function.

\section*{Examples}

The statement creates a fifth order, continuous-time uncertain system s1 of size 2 -by- 3 . Note your display can differ because a random seed is used.
```

s1 = randuss(5,2,3)
USS: 5 States, 2 Outputs, 3 Inputs, Continuous System
CTPQV: 1x1 LTI, max. gain = 2.2, 1 occurrence
IGDHN: real, nominal = -4.03, variability =
[-3.74667 22.7816]%, 1 occurrence
MLGCD: complex, nominal = 8.36+3.09i, +/- 7.07%, 1 occurrence
OEDJK: complex, nominal = -0.346-0.296i, radius = 0.895,
1 occurrence

```

\author{
See Also \\ rand | randn | randatom | randumat | ucomplex | ultidyn
}

\section*{reduce}

Simplified access to Hankel singular value based model reduction functions

\section*{Syntax}
```

GRED = reduce(G)
GRED = reduce(G,order)
[GRED,redinfo] = reduce(G,'key1','value1',...)
[GRED,redinfo] = reduce(G,order,'key1','value1',...)

```

\section*{Description}
reduce returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model, Hankel singular values of the original system and some other relevant model reduction information.

An error bound is a measure of how close GRED is to \(G\) and is computed based on either additive error, \(\|\) G-GRED \(\|_{\infty}\), multiplicative error, \(\| \mathrm{G}^{-1}\) (G-GRED) \(\|_{\infty}\), or nugap error (ref.: ncfmr) [1],[4],[5].

Hankel singular values of a stable system indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's. Model reduction routines, which based on Hankel singular values are grouped by their error bound types. In many cases, the additive error method GRED=reduce ( \(G\), ORDER) is adequate to provide a good reduced order model. But for systems with lightly damped poles and/or zeros, a multiplicative error method (namely, GRED=reduce (G, ORDER, 'ErrorType ', 'mult')) that minimizes the relative error between G and GRED tends to produce a better fit.

This table describes input arguments for reduce.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline G & \begin{tabular}{l} 
LTI model to be reduced (without any other inputs will plot its Hankel \\
singular values and prompt for reduced order).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline ORDER & \begin{tabular}{l} 
(Optional) Integer for the desired order of the reduced model, or \\
optionally a vector packed with desired orders for batch runs.
\end{tabular} \\
\hline
\end{tabular}

A batch run of a serial of different reduced order models can be generated by specifying order \(=x: y\), or a vector of integers. By default, all the anti-stable part of a physical system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for ' ORDER ' after an 'ErrorType' is selected. In this case, reduced order will be determined when the sum of the tails of the Hankel SV's reaches the 'MaxError'.
\begin{tabular}{|c|c|c|}
\hline Argument & Value & Description \\
\hline 'Algorithm' & \begin{tabular}{l}
'balance \\
'schur' \\
'hankel' \\
'bst' \\
'ncf'
\end{tabular} & \begin{tabular}{l}
Default for 'add ' (balancmr) \\
Option for 'add ' (schurmr) \\
Option for 'add ' (hankelmr) \\
Default for 'mult' (bstmr) \\
Default for 'ncf' (ncfmr)
\end{tabular} \\
\hline 'ErrorType' & \[
\begin{aligned}
& \text { 'add' } \\
& \text { 'mult' } \\
& \text { 'ncf' }
\end{aligned}
\] & \begin{tabular}{l}
Additive error (default) \\
Multiplicative error at model output \\
NCF nugap error
\end{tabular} \\
\hline 'MaxError' & A real number or a vector of different errors & \begin{tabular}{l}
Reduce to achieve \(\mathrm{H}_{\infty}\) error. \\
When present, 'MaxError' overrides ORDER input.
\end{tabular} \\
\hline 'Weights' & \{Wout, Win\} cell array & Optimal 1x2 cell array of LTI weights Wout (output) and Win (input); default is both identity; used only with 'ErrorType', 'add'. Weights must be invertible. \\
\hline 'Display' & 'on' or 'off' & Display Hankel singular plots (default 'off'). \\
\hline 'Order' & Integer, vector or cell array & Order of reduced model. Use only if not specified as 2nd argument. \\
\hline
\end{tabular}

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.
\begin{tabular}{|c|c|}
\hline Argument & Description \\
\hline GRED & LTI reduced order model. Becomes multi-dimensional array when input is a serial of different model order array. \\
\hline REDINFO & \begin{tabular}{l}
A STRUCT array with 3 fields: \\
- REDINFO.ErrorBound \\
- REDINFO.StabSV \\
- REDINFO.UnstabSV \\
For 'hankel' algorithm, STRUCT array becomes: \\
- REDINFO.ErrorBound \\
- REDINFO.StabSV \\
- REDINFO.UnstabSV \\
- REDINFO.Ganticausal \\
For 'ncf' option, STRUCT array becomes: \\
- REDINFO.GL \\
- REDINFO.GR \\
- REDINFO.hsv
\end{tabular} \\
\hline
\end{tabular}

G can be stable or unstable. \(G\) and GRED can be either continuous or discrete.
A successful model reduction with a well-conditioned original model \(G\) will ensure that the reduced model GRED satisfies the infinity norm error bound.

\section*{Examples}

Given a continuous or discrete, stable or unstable system, G, the following commands can get a set of reduced order models based on your selections:
```

rng(1234,'twister');
G = rss(30,5,4);
[g1, redinfo1] = reduce(G); % display Hankel SV plot
% and prompt for order
[g2, redinfo2] = reduce(G,20); % default to balancmr
[g3, redinfo3] = reduce(G,[10:2:18],'algorithm','schur'); % select schurmr
[g4, redinfo] = reduce(G,'ErrorType','mult','MaxError',[0.01, 0.05]);
[g5, redinfo5] = reduce(G,'ErrorType','add','algorithm','hankel', ...
'maxerror',[0.01]);
for i = 1:5
figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

```

\section*{References}
[1] K. Glover, "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their L - error Bounds," Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.
[2] M. G. Safonov and R. Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. AC-2, no. 7, July 1989, pp. 729-733.
[3] M. G. Safonov, R. Y. Chiang and D. J. N. Limebeer, "Optimal Hankel Model Reduction for Nonminimal Systems," IEEE Trans. on Automat. Contr., vol. 35, No. 4, April, 1990, pp. 496-502.
[4] M. G. Safonov and R. Y. Chiang, "Model Reduction for Robust Control: A Schur Relative-Error Method," International Journal of Adaptive Control and Signal Processing, vol. 2, pp. 259-272, 1988.
[5] K. Zhou, "Frequency weighted L[[BULLET]] error bounds," Syst. Contr. Lett., Vol. 21, 115-125, 1993.
```

See Also
balancmr | bstmr | ncfmr | schurmr | hankelmr | hankelsv

```

\section*{repmat}

Replicate and tile array

\section*{Syntax}
```

B = repmat(A,M,N)

```

\section*{Description}
\(B=\operatorname{repmat}(A, M, N)\) creates a large matrix \(B\) consisting of an \(M\)-by- \(N\) tiling of copies of A.
\(B=\operatorname{repmat}(A,[M N])\) accomplishes the same result as repmat \((A, M, N)\).
\(B=\operatorname{repmat}(A,[M N P\)...]) tiles the array A to produce an M-by-N-by-P-by-... block array. A can be N-D.
repmat ( \(A, M, N\) ) for scalar A is commonly used to produce an M-by-N matrix filled with values of \(A\).

\section*{Examples}

Simple examples of using repmat are
```

repmat(randumat(2,2),2,3)
repmat(ureal('A',6),[4 2])

```

\section*{robopt}

Options object for use with robuststab and robustperf

Note: robopt will be removed in a future version. Use robuststabOptions or robustperfOptions instead.

\section*{robustperf}

Robust performance margin of uncertain multivariable system

\section*{Syntax}
```

perfmarg = robustperf(usys)
[perfmarg,wcu,report,info] = robustperf(usys)
[perfmarg,wcu,report,info] = robustperf(usys,opt)

```

\section*{Description}

The performance of a nominally stable uncertain system model will generally degrade for specific values of its uncertain elements. robustperf, largely included for historical purposes, computes the robust performance margin, which is one measure of the level of degradation brought on by the modeled uncertainty.

As with other uncertain-system analysis tools, only bounds on the performance margin are computed. The exact robust performance margin is guaranteed to lie between these upper and lower bounds.

The computation used in robustperf is a frequency-domain calculation. Coupled with stability of the nominal system, this frequency domain calculation determines robust performance of usys. If the input system usys is a ufrd, then the analysis is performed on the frequency grid within the ufrd. Note that the stability of the nominal system is not verified by the computation. If the input system sys is a uss, then the stability of the nominal system is first checked, an appropriate frequency grid is generated (automatically), and the analysis performed on that frequency grid. In all discussion that follows, \(N\) denotes the number of points in the frequency grid.

\section*{Basic Syntax}

Suppose usys is a ufrd or uss with \(M\) uncertain elements. The results of
```

[perfmarg,perfmargunc,Report] = robustperf(usys)

```
are such that perfmarg is a structure with the following fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline LowerBound & Lower bound on robust performance margin, positive scalar. \\
\hline UpperBound & Upper bound on robust performance margin, positive scalar. \\
\hline CriticalFrequency & \begin{tabular}{l} 
The value of frequency at which the performance \\
degradation curve crosses the \(y=1 / x\) curve. See \\
"Generalized Robustness Analysis".
\end{tabular} \\
\hline
\end{tabular}
perfmargunc is a struct of values of uncertain elements associated with the intersection of the performance degradation curve and the \(y=1 / x\) curve. See "Generalized Robustness Analysis". There are \(M\) field names, which are the names of uncertain elements of usys.

Report is a text description of the robust performance analysis results.
If usys is an array of uncertain models, the outputs are struct arrays whose entries correspond to each model in the array.

\section*{Examples}

Create a plant with a nominal model of an integrator, and include additive unmodeled dynamics uncertainty of a level of 0.4 (this corresponds to \(100 \%\) model uncertainty at 2.5 rads/s).
```

P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4);

```

Design a "proportional" controller \(K\) that puts the nominal closed-loop bandwidth at 0.8 \(\mathrm{rad} / \mathrm{s}\). Roll off \(K\) at a frequency 25 times the nominal closed-loop bandwidth. Form the closed-loop sensitivity function.
```

BW = 0.8;
K = tf(BW,[1/(25*BW) 1]);
S = feedback(1,P*K);

```

Assess the performance margin of the closed-loop sensitivity function. Because the nominal gain of the sensitivity function is 1 , and the performance degradation curve is monotonically increasing (see "Generalized Robustness Analysis"), the performance margin should be less than 1 .
```

[perfmargin,punc] = robustperf(S);
perfmargin
perfmargin =
UpperBound: 7.4305e-001
LowerBound: 7.4305e-001
CriticalFrequency: 5.3096e+000

```

You can verify that the upper bound of the performance margin corresponds to a point on or above the \(y=1 / x\) curve. First, compute the normalized size of the value of the uncertain element, and check that this agrees with the upper bound.
```

nsize = actual2normalized(S.Uncertainty.delta, punc.delta)
nsize =
perfmargin.UpperBound
ans =
7.4305e-001

```

Compute the system gain with that value substituted, and verify that the product of the normalized size and the system gain is greater than or equal to 1 .
```

gain = norm(usubs(S,punc),inf,.00001);
nsize*gain
ans =
1.0000e+000

```

Finally, as a sanity check, verify that the robust performance margin is less than the robust stability margin.
```

[stabmargin] = robuststab(S);
stabmargin
stabmargin =
UpperBound: 3.1251e+000
LowerBound: 3.1251e+000
DestabilizingFrequency: 4.0862e+000

```

While the robust stability margin is easy to describe (poles migrating from stable region into unstable region), describing the robust performance margin is less elementary. See the diagrams and figures in "Generalized Robustness Analysis". Rather than finding values for uncertain elements that lead to instability, the analysis finds values of uncertain elements "corresponding to the intersection point of the performance degradation curve with a \(y=1 / x\) hyperbola." This characterization, mentioned above in the description of perfmarg.CriticalFrequency and perfmargunc, is used often in the descriptions below.

\section*{Basic Syntax with Fourth Output Argument}

A fourth output argument yields more specialized information, including sensitivities and frequency-by-frequency information.
[perfmarg, perfmargunc, Report,Info] = robustperf(usys)
In addition to the first 3 output arguments, described previously, Info is a structure with the following fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Sensitivity & \begin{tabular}{l} 
A struct with \(M\) fields, field names are names of \\
uncertain elements of usys. Values of fields are positive \\
and contain the local sensitivity of the overall Stability \\
Margin to that element's uncertainty range. For instance, \\
a value of 25 indicates that if the uncertainty range is \\
enlarged by 8\%, then the stability margin should drop by \\
about 2\% (25\% of 8). If the Sensitivity property of the \\
robustperf0ptions object is ' off ' , the values are set to \\
NaN.
\end{tabular} \\
\hline Frequency & N-by-1 frequency vector associated with analysis. \\
\hline BadUncertainValues & \begin{tabular}{l} 
N-by-1 struct array containing the worst uncertain element \\
values at each frequency.
\end{tabular} \\
\hline MussvBnds & \begin{tabular}{l} 
A 1-by-2 frd, with upper and lower bounds from mussv. \\
The (1,1) entry is the \(\mu\)-upper bound (corresponds to \\
perfmarg. LowerBound) and the (1,2) entry is the \(\mu\)-lower \\
bound (for perfmarg. UpperBound).
\end{tabular} \\
\hline MussvInfo & Structure of compressed data from mussv. \\
\hline
\end{tabular}

\section*{Specifying Additional Options}

Use robustperfoptions to specify additional options for the robustperf computation. For example, you can control what is displayed during the computation, turn the sensitivity computation on or off, set the step size in the sensitivity computation, or control the option argument used in the underlying call to mussv. For example, you can turn the display on and turn off the sensitivity by executing
```

opt = robustperfOptions('Sensitivity','off','Display','on');

```
```

[PerfMarg,Destabunc,Report,Info] = robustperf(usys,opt)

```

See the robustperfOptions reference page for more information about available options.

\section*{Limitations}

Because the calculation is carried out with a frequency gridding, it is possible (likely) that the true critical frequency is missing from the frequency vector used in the analysis. This is similar to the problem in robuststab. However, in comparing to robuststab, the problem in robustperf is less acute. The robust performance margin, considered a function of problem data and frequency, is typically a continuous function (unlike the robust stability margin, described in Getting Reliable Estimates of Robustness Margins). Hence, in robust performance margin calculations, increasing the density of the frequency grid will always increase the accuracy of the answers, and in the limit, answers arbitrarily close to the actual answers are obtainable with finite frequency grids.

\section*{More About}

\section*{Algorithms}

A rigorous robust performance analysis consists of two steps:
1 Verify that the nominal system is stable.
2 Robust performance analysis on an augmented system.
The algorithm in robustperf follows this in spirit, with the following limitations:
- If usys is a uss object, then robustperf explicitly checks the stability of the nominal value. However, if usys is a ufrd model, robustperf instead assumes that the nominal value is stable, and does not perform this check.
- The exact performance margin is guaranteed to be no larger than UpperBound (some uncertain elements associated with this magnitude cause instability - one instance is returned in the structure perfmargunc). The instability created by perfmargunc occurs at the frequency value in CriticalFrequency.
- Similarly, the exact performance margin is guaranteed to be no smaller than LowerBound.

\section*{See Also \\ mussv | norm | robustperfOptions | robuststab | actual2normalized | wcgain | wcsens | wcmargin}

\section*{robustperfOptions}

Option set for robustperf

\section*{Syntax}
options = robustperfOptions
options = robustperfOptions(Name,Value,...)

\section*{Description}
options = robustperf0ptions returns the default option set for the robustperf command.
options = robustperfOptions(Name,Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.
robustperfOptions takes the following Name arguments:

\section*{'Display'}

String specifying whether robustperf displays progress of mussv computations.
- 'off' - Do not display progress.
- 'on ' — Display progress. This setting overrides the silent ('s') option in the Mussv string.

Default: 'off'

\section*{'Sensitivity'}

String specifying whether robustperf computes the sensitivity of the performance margin with respect to each individual uncertain element. This element-by-element sensitivity provides an indication of which elements the performance margin is most sensitive to. Turning off the element-by-element sensitivity calculation speeds up robustperf.
- 'on' - Compute the sensitivity for each uncertain element.
- 'off' - Do not compute the sensitivity for each uncertain element.

Default: ' on '

\section*{'VaryUncertainty'}

Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate uses a finite difference calculation.

Default: 25

\section*{'Mussv'}

Option string for the mussv calculation that robustperf performs. See mussv for the available options.

Default: ' ' (default behavior of mussv)

\section*{Output Arguments}

\section*{options}

Option set containing the specified options for the robustperf command.

\section*{Examples}

Create an options set for a robustperf calculation that displays the progress of the mussv calculation. Also, turn off the element-by-element sensitivity calculation.
```

options = robustperfOptions('Display','on','Sensitivity','off');

```

Alternatively, use dot notation to set the values of options.
```

options = robustperfOptions;

```
options.Display = 'on';
options.Sensitivity = 'off';

\section*{See Also}
robustperf

\section*{robuststab}

Calculate robust stability margins of uncertain multivariable system

\section*{Syntax}
[stabmarg,destabunc, report,info] = robuststab(sys)
[stabmarg,destabunc, report,info] = robuststab(sys,opt)

\section*{Description}

A nominally stable uncertain system is generally unstable for specific values of its uncertain elements. Determining the values of the uncertain elements closest to their nominal values for which instability occurs is a robust stability calculation.

If the uncertain system is stable for all values of uncertain elements within their allowable ranges (ranges for ureal, norm bound or positive-real constraint for ultidyn, radius for ucomplex, weighted ball for ucomplexm), the uncertain system is robustly stable. Conversely, if there is a combination of element values that cause instability, and all lie within their allowable ranges, then the uncertain system is not robustly stable.
robuststab computes the margin of stability robustness for an uncertain system. A stability robustness margin greater than 1 means that the uncertain system is stable for all values of its modeled uncertainty. A stability robustness margin less than 1 implies that certain allowable values of the uncertain elements, within their specified ranges, lead to instability.

Numerically, a margin of 0.5 (for example) implies two things: the uncertain system remains stable for all values of uncertain elements that are less than 0.5 normalized units away from their nominal values and, there is a collection of uncertain elements that are less than or equal to 0.5 normalized units away from their nominal values that results in instability. Similarly, a margin of 1.3 implies that the uncertain system remains stable for all values of uncertain elements up to \(30 \%\) outside their modeled uncertain ranges. See actual2normalized for converting between actual and normalized deviations from the nominal value of an uncertain element.

As with other uncertain-system analysis tools, only bounds on the exact stability margin are computed. The exact robust stability margin is guaranteed to lie in between these upper and lower bounds.

The computation used in robuststab is a frequency-domain calculation, which determines whether poles can migrate (due to variability of the uncertain atoms) across the stability boundary (imaginary axis for continuous-time, unit circle for discretetime). Coupled with stability of the nominal system, determining that no migration occurs constitutes robust stability. If the input system sys is a ufrd, then the analysis is performed on the frequency grid within the ufrd. Note that the stability of the nominal system is not verified by the computation. If the input system sys is a uss, then the stability of the nominal system is first checked, an appropriate frequency grid is generated (automatically), and the analysis performed on that frequency grid. In all discussion that follows, \(N\) denotes the number of points in the frequency grid.

\section*{Basic Syntax}

Suppose sys is a ufrd or uss with \(M\) uncertain elements. The results of
[stabmarg, destabunc, Report] = robuststab(sys)
are that stabmarg is a structure with the following fields
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline LowerBound & \begin{tabular}{l} 
Lower bound on stability margin, positive scalar. If greater \\
than 1, then the uncertain system is guaranteed stable for all \\
values of the modeled uncertainty. If the nominal value of the \\
uncertain system is unstable, then stabmarg. UpperBound and \\
stabmarg.LowerBound both equal 0.
\end{tabular} \\
\hline UpperBound & \begin{tabular}{l} 
Upper bound on stability margin, positive scalar. If less than 1, \\
the uncertain system is not stable for all values of the modeled \\
uncertainty.
\end{tabular} \\
\hline DestabilizingFrequency & \begin{tabular}{l} 
The critical value of frequency at which instability occurs, \\
with uncertain elements closest to their nominal values. At a \\
particular value of uncertain elements (see destabunc below), \\
the poles migrate across the stability boundary (imaginary-axis in \\
continuous-time systems, unit-disk in discrete-time systems) at the \\
frequency given by DestabilizingFrequency.
\end{tabular} \\
\hline
\end{tabular}
destabunc is a structure of values of uncertain elements, closest to nominal, that cause instability. There are \(M\) field names, which are the names of uncertain elements of sys. The value of each field is the corresponding value of the uncertain element, such that when jointly combined, lead to instability. The command pole(usubs (sys, destabunc)) shows the instability. If \(A\) is an uncertain element of sys, then
actual2normalized(destabunc.A, sys.Uncertainty.A)
will be less than or equal to UpperBound, and for at least one uncertain element of sys, this normalized distance will be equal to UpperBound, proving that UpperBound is indeed an upper bound on the robust stability margin.

Report is a text description of the arguments returned by robuststab.
If sys is an array of uncertain models, the outputs are struct arrays whose entries correspond to each model in the array.

\section*{Examples}

Construct a feedback loop with a second-order plant and a PID controller with approximate differentiation. The second-order plant has frequency-dependent uncertainty, in the form of additive unmodeled dynamics, introduced with an ultidyn object and a shaping filter.
robuststab is used to compute the stability margins of the closed-loop system with respect to the plant model uncertainty.
```

P = tf(4,[1 .8 4]);
delta = ultidyn('delta',[1 1],'SampleStateDimension',5);
Pu = P + 0.25*tf([1],[.15 1])*delta;
C = tf([1 1],[.1 1]) + tf(2,[1 0]);
S = feedback(1,Pu*C);
[stabmarg,destabunc,report,info] = robuststab(S);

```

You can view the stabmarg variable.
```

stabmarg
stabmarg =
UpperBound: 0.8181
LowerBound: 0.8181
DestabilizingFrequency: 9.1321

```

As the margin is less than 1 , the closed-loop system is not stable for plant models covered by the uncertain model Pu. There is a specific plant within the uncertain behavior modeled by Pu (actually about \(82 \%\) of the modeled uncertainty) that leads to closed-loop instability, with the poles migrating across the stability boundary at \(9.1 \mathrm{rads} / \mathrm{s}\).

The report variable is specific, giving a plain-language version of the conclusion.
```

report
report =
Uncertain System is NOT robustly stable to modeled uncertainty.
-- It can tolerate up to 81.8% of modeled uncertainty.
-- A destabilizing combination of 81.8% the modeled uncertainty
exists, causing an instability at 9.13 rad/s.
-- Sensitivity with respect to uncertain element ...
'delta' is 100%. Increasing 'delta' by 25% leads to a
25% decrease in the margin.

```

Because the problem has only one uncertain element, the stability margin is completely determined by this element, and hence the margin exhibits \(100 \%\) sensitivity to this uncertain element.

You can verify that the destabilizing value of delta is indeed about 0.82 normalized units from its nominal value.
```

actual2normalized(S.Uncertainty.delta,destabunc.delta)
ans =
0.8181

```

Use usubs to substitute the specific value into the closed-loop system. Verify that there is a closed-loop pole near j9.1, and plot the unit-step response of the nominal closed-loop system, as well as the unstable closed-loop system.
```

Sbad = usubs(S,destabunc);
pole(Sbad)
ans =
1.0e+002 *
-3.2318
-0.2539
-0.0000 + 0.0913i
-0.0000 - 0.0913i
-0.0203 + 0.0211i
-0.0203 - 0.0211i
-0.0106 + 0.0116i
-0.0106 - 0.0116i

```
```

step(S.NominalValue,'r--',Sbad, 'g',4);

```

Finally, as an ad-hoc test, set the gain bound on the uncertain delta to 0.81 (slightly less than the stability margin). Sample the closed-loop system at 100 values, and compute the poles of all these systems.
```

S.Uncertainty.delta.Bound = 0.81;
S100 = usample(S,100);
p100 = pole(S100);
max(real(p100(:)))
ans =
-6.4647e-007

```

As expected, all poles have negative real parts.

\section*{Basic Syntax with Fourth Output Argument}

A fourth output argument yields more specialized information, including sensitivities and frequency-by-frequency information.
[StabMarg, Destabunc, Report, Info] = robuststab(sys)
In addition to the first 3 output arguments, described previously, Info is a structure with the following fields
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Sensitivity & \begin{tabular}{l} 
A struct with \(M\) fields, Field names are names of uncertain \\
elements of sys. Values of fields are positive, each the local \\
sensitivity of the overall stability margin to that element's \\
uncertainty range. For instance, a value of 25 indicates that if the \\
uncertainty range is enlarged by 8\%, then the stability margin \\
should drop by about \(2 \%\) (25\% of 8). If the Sensitivity property \\
of the robuststabOptions object is ' off ', the values are set to \\
NaN.
\end{tabular} \\
\hline Frequency & \(N\)-by-1 frequency vector associated with analysis. \\
\hline BadUncertainValues & \begin{tabular}{l} 
N-by-1 struct array containing the destabilizing uncertain element \\
values at each frequency.
\end{tabular} \\
\hline MussvBnds & \begin{tabular}{l} 
A 1-by-2 frd, with upper and lower bounds from mussv. \\
The (1,1) entry is the \(\mu\)-upper bound (corresponds to \\
stabmarg. LowerBound) and the (1,2) entry is the \(\mu\)-lower bound \\
(for stabmarg. UpperBound).
\end{tabular} \\
\hline
\end{tabular}

\section*{Field \(\quad\) Description \\ MussvInfo \\ Specifying Additional Options}

Structure of compressed data from mussv.

Use robuststabOptions to specify additional options for the robuststab computation. For example, you can control what is displayed during the computation, turning the sensitivity computation on or off, set the step-size in the sensitivity computation, or control the option argument used in the underlying call to mussv. For instance, you can turn the display on, and the sensitivity calculation off by executing
```

opt = robuststabOptions('Sensitivity','off','Display','on');
[StabMarg,Destabunc,Report,Info] = robuststab(sys,opt)

```

See the robuststabOptions reference page for more information about available options.

\section*{Limitations}

Under most conditions, the robust stability margin at each frequency is a continuous function of the problem data at that frequency. Because the problem data, in turn, is a continuous function of frequency, it follows that finite frequency grids are usually adequate in correctly assessing robust stability bounds, assuming the frequency grid is dense enough.

Nevertheless, there are simple examples that violate this. In some problems, the migration of poles from stable to unstable only occurs at a finite collection of specific frequencies (generally unknown to you). Any frequency grid that excludes these critical frequencies (and almost every grid will exclude them) will result in undetected migration and misleading results, namely stability margins of \(\infty\).

See Getting Reliable Estimates of Robustness Margins for more information about circumventing the problem in an engineering-relevant fashion.

\section*{More About}

\section*{Algorithms}

A rigorous robust stability analysis consists of two steps:

1 Verify that the nominal system is stable;
2 Verify that no poles cross the stability boundary as the uncertain elements vary within their ranges.

Because the stability boundary is also associated with the frequency response, the second step can be interpreted (and carried out) as a frequency domain calculation. This amounts to a classical \(\mu\)-analysis problem.

The algorithm in robuststab follows this in spirit, with the following limitations.
- If sys is a uss object, then the first requirement of stability of nominal value is explicitly checked within robuststab. However, if sys is an ufrd, then the verification of nominal stability from the nominal frequency response data is not performed, and is instead assumed.
- In the second step (monitoring the stability boundary for the migration of poles), rather than check all points on stability boundary, the algorithm only detects migration of poles across the stability boundary at the frequencies in info.Frequency.

See "Limitations" on page 1-309 for information about issues related to migration detection.

The exact stability margin is guaranteed to be no larger than UpperBound (some uncertain elements associated with this magnitude cause instability - one instance is returned in the structure destabunc). The instability created by destabunc occurs at the frequency value in DestabilizingFrequency.

Similarly, the exact stability margin is guaranteed to be no smaller than LowerBound. In other words, for all modeled uncertainty with magnitude up to LowerBound, the system is guaranteed stable. These bounds are derived using the upper bound for the structured singular value, which is essentially optimally-scaled, small-gain theorem analysis.

\section*{See Also}
loopmargin | mussv | robuststabOptions | robustperf | wcgain | wcsens | wcmargin

\section*{robuststabOptions}

Option set for robuststab

\section*{Syntax}
options = robuststabOptions
options = robuststabOptions(Name,Value,...)

\section*{Description}
options = robuststabOptions returns the default option set for the robuststab command.
options = robuststabOptions(Name,Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . ., NameN, ValueN.
robuststabOptions takes the following Name arguments:

\section*{'Display'}

String specifying whether robuststab displays progress of mussv computations.
- 'off' - Do not display progress.
- 'on ' — Display progress. This setting overrides the silent ('s') option in the Mussv string.

Default: 'off'

\section*{'Sensitivity'}

String specifying whether robuststab computes the sensitivity of the stability margin with respect to each individual uncertain element. This element-by-element sensitivity provides an indication of which elements the stability margin is most sensitive to. Turning off the element-by-element sensitivity calculation speeds up robuststab.
- 'on ' - Compute the sensitivity for each uncertain element.
- 'off' - Do not compute the sensitivity for each uncertain element.

Default: ' on '
'VaryUncertainty '
Percentage variation of uncertainty for computing sensitivity. The sensitivity estimate uses a finite difference calculation.

Default: 25

\section*{'Mussv'}

Option string for the mussv calculation that robustperf performs. See mussv for the available options.

Default: ' ' (default behavior of mussv)

\section*{Output Arguments}

\section*{options}

Option set containing the specified options for the robuststab command.

\section*{Examples}

Create an options set for a robuststab calculation that displays the progress of the mussv calculation. Also, turn off the element-by-element sensitivity calculation.
```

options = robuststabOptions('Display','on','Sensitivity','off');

```

Alternatively, use dot notation to set the values of options.
options = robuststabOptions;
options.Display = 'on';
options.Sensitivity = 'off';

\section*{See Also}
robuststab

\section*{schurmr}

Balanced model truncation via Schur method

\section*{Syntax}
```

GRED = schurmr(G)
GRED = schurmr(G,order)
[GRED,redinfo] = schurmr(G,key1,value1,...)
[GRED,redinfo] = schurmr(G,order,key1,value1,...)

```

\section*{Description}
schurmr returns a reduced order model GRED of G and a struct array redinfo containing the error bound of the reduced model and Hankel singular values of the original system.

The error bound is computed based on Hankel singular values of G. For a stable system Hankel singular values indicate the respective state energy of the system. Hence, reduced order can be directly determined by examining the system Hankel SV's, or.

With only one input argument \(G\), the function will show a Hankel singular value plot of the original model and prompt for model order number to reduce.

This method guarantees an error bound on the infinity norm of the additive error \(\|\) GGRED \(\|_{\infty}\) for well-conditioned model reduced problems [1]:
\[
\|G-G r e d\|_{\infty} \leq 2 \sum_{k+1}^{n} \sigma_{i}
\]

This table describes input arguments for schurmr.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline G & \begin{tabular}{l} 
LTI model to be reduced (without any other inputs will plot its Hankel \\
singular values and prompt for reduced order).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline ORDER & \begin{tabular}{l} 
(Optional) an integer for the desired order of the reduced model, or \\
optionally a vector packed with desired orders for batch runs
\end{tabular} \\
\hline
\end{tabular}

A batch run of a serial of different reduced order models can be generated by specifying order \(=x: y\), or a vector of integers. By default, all the anti-stable part of a system is kept, because from control stability point of view, getting rid of unstable state(s) is dangerous to model a system.
'MaxError' can be specified in the same fashion as an alternative for ' ORDER '. In this case, reduced order will be determined when the sum of the tails of the Hankel sv's reaches the 'MaxError'.
\begin{tabular}{|l|l|l|}
\hline Argument & Value & Description \\
\hline 'MaxError' & \begin{tabular}{l} 
A real number \\
or a vector of \\
different errors
\end{tabular} & \begin{tabular}{l} 
Reduce to achieve \(H_{\infty}\) error. \\
When present, 'MaxError' overides ORDER input.
\end{tabular} \\
\hline 'Weights' & \begin{tabular}{l} 
\{Wout , Win \} cell \\
array
\end{tabular} & \begin{tabular}{l} 
Optimal 1x2 cell array of LTI weights Wout \\
(output) and Win (input); default is both identity; \\
Weights must be invertible.
\end{tabular} \\
\hline 'Display' & 'on' or 'off' & Display Hankel singular plots (default 'off'). \\
\hline 'Order' & \begin{tabular}{l} 
Integer, vector or \\
cell array
\end{tabular} & \begin{tabular}{l} 
Order of reduced model. Use only if not specified as \\
2nd argument.
\end{tabular} \\
\hline
\end{tabular}

Weights on the original model input and/or output can make the model reduction algorithm focus on some frequency range of interests. But weights have to be stable, minimum phase and invertible.

This table describes output arguments.
\begin{tabular}{|l|l|}
\hline Argument & Description \\
\hline GRED & \begin{tabular}{l} 
LTI reduced order model. Becomes multi-dimensional array when \\
input is a serial of different model order array.
\end{tabular} \\
\hline REDINFO & \begin{tabular}{l} 
A STRUCT array with 3 fields: \\
\\
\end{tabular} \begin{tabular}{l} 
• REDINFO. ErrorBound \\
\\
\end{tabular}\(\quad\) REDINFO.StabSV \\
\hline
\end{tabular}

G can be stable or unstable. \(G\) and GRED can be either continuous or discrete.

\section*{Examples}

Given a continuous or discrete, stable or unstable system, G , the following commands can get a set of reduced order models based on your selections:
```

rng(1234,'twister');
G = rss(30,5,4);
[g1, redinfo1] = schurmr(G); % display Hankel SV plot
% and prompt for order (try 15:20)
[g2, redinfo2] = schurmr(G,20);
[g3, redinfo3] = schurmr(G,[10:2:18]);
[g4, redinfo4] = schurmr(G,'MaxError',[0.01, 0.05]);
for i = 1:4
figure(i); eval(['sigma(G,g' num2str(i) ');']);
end

```

\section*{More About}

\section*{Algorithms}

Given a state space \((A, B, C, D)\) of a system and \(k\), the desired reduced order, the following steps will produce a similarity transformation to truncate the original state-space system to the \(k^{\text {th }}\) order reduced model [16].

1 Find the controllability and observability grammians \(P\) and \(Q\).
2 Find the Schur decomposition for \(P Q\) in both ascending and descending order, respectively,
\[
\begin{aligned}
V_{A}^{T} P Q V_{A} & =\left[\begin{array}{ccc}
\lambda_{1} & \ldots & \ldots \\
0 & \ldots & \ldots \\
0 & 0 & \lambda_{n}
\end{array}\right] \\
V_{D}^{T} P Q V_{D} & =\left[\begin{array}{ccc}
\lambda n & \ldots & \ldots \\
0 & \ldots & \ldots \\
0 & 0 & \lambda_{1}
\end{array}\right]
\end{aligned}
\]

3 Find the left/right orthonormal eigen-bases of \(P Q\) associated with the \(k^{\text {th }}\) big Hankel singular values.
\[
V_{A}=[V_{R, S M A L L}, \overbrace{V_{L, B I G}}]
\]

4 Find the SVD of \(\left(V^{T}{ }_{L, B I G} V_{R, B I G}\right)=U \Sigma V^{T}\)
\[
V_{D}=[\overbrace{V_{R, B I G}}, V_{L, S M A L L}]
\]

5 Form the left/right transformation for the final \(k^{\text {th }}\) order reduced model
\[
\begin{aligned}
& S_{L, B I G}=V_{L, B I G} U \Sigma(1: k, 1: k)^{-1 / 2} \\
& S_{\mathrm{R}, \mathrm{BIG}}=V_{R, B I G} V \Sigma(1: k, 1: k)^{-1 / 2}
\end{aligned}
\]

6 Finally,
\[
\left[\begin{array}{c|c}
\hat{A} & \hat{B} \\
\hline \hat{C} & \hat{D}
\end{array}\right]=\left[\begin{array}{c|c}
S_{L, B I G}^{T} A S_{R, B I G} & S_{L, B I G}^{T} B \\
\hline C S_{R, B I G} & D
\end{array}\right]
\]

The proof of the Schur balance truncation algorithm can be found in [2].

\section*{References}
[1] K. Glover, "All Optimal Hankel Norm Approximation of Linear Multivariable Systems, and Their \(L_{\alpha}\) - error Bounds," Int. J. Control, vol. 39, no. 6, pp. 1145-1193, 1984.
[2] M. G. Safonov and R. Y. Chiang, "A Schur Method for Balanced Model Reduction," IEEE Trans. on Automat. Contr., vol. 34, no. 7, July 1989, pp. 729-733.
```

See Also
reduce | balancmr | bstmr | ncfmr | hankelmr | hankelsv

```

\section*{sdhinfnorm}

Compute \(L_{2}\) norm of continuous-time system in feedback with discrete-time system

\section*{Syntax}
```

[gaml,gamu] = sdhinfnorm(sdsys,k)
[gaml,gamu] = sdhinfnorm(sdsys,k,delay)
[gaml,gamu] = sdhinfnorm(sdsys,k,delay,tol)

```

\section*{Description}
[gaml, gamu] = sdhinfnorm(sdsys, k) computes the \(L_{2}\) induced norm of a continuous-time LTI plant, sdsys, in feedback with a discrete-time controller, k , connected through an ideal sampler and a zero-order hold (see figure below). sdsys must be strictly proper, such that the constant feedback gain must be zero. The outputs, gamu and gaml, are upper and lower bounds on the induced \(L_{2}\) norm of the sampled-data closed-loop system.

[gaml, gamu] = sdhinfnorm(sdsys,k,h,delay) includes the input argument delay. delay is a nonnegative integer associated with the number of computational delays of the controller. The default value of the delay is 0 .
[gaml,gamu] = sdhinfnorm(sdsys,k,h,delay,tol) includes the input argument, tol, which defines the difference between upper and lower bounds when search terminates. The default value of tol is 0.001 .

\section*{Examples}

Consider an open-loop, continuous-time transfer function \(p=30 / s(s+30)\) and a continuous-time controller \(k=4 /(s+4)\). The closed-loop continuous-time system has a peak magnitude across frequency of 1.
```

p = ss(tf(30,[1 30])*tf([1],[1 0]));
k = ss(tf(4,[1 4]));
cl = feedback(p,k);
norm(cl,'inf')
ans =
1

```

Initially the controller is to be implemented at a sample rate of 1.5 Hz . The sample-data norm of the closed-loop system with the discrete-time controller is 1.0 .
```

kd = c2d(k,0.75,'zoh');
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd);
[gu gl]
ans =
3.7908 3.7929

```

Because of the large difference in norm between the continuous-time and sampled-data closed-loop system, the sample rate of the controller is increased from 1.5 Hz to 5 Hz . The sample-data norm of the new closed-loop system is 3.79.
```

kd = c2d(k,0.2,'zoh');
[gu,gl] = sdhinfnorm([1; 1]*p*[1 1],-kd);
[gu gl]
ans =
1.0044 1.0049

```

\section*{More About}

\section*{Algorithms}
sdhinfnorm uses variations of the formulas described in the Bamieh and Pearson paper to obtain an equivalent discrete-time system. (These variations are done to improve the numerical conditioning of the algorithms.) A preliminary step is to determine whether the norm of the continuous-time system over one sampling period without control is less than the given value. This requires a search and is, computationally, a relatively expensive step.

\section*{References}

Bamieh, B.A., and J.B. Pearson, "A General Framework for Linear Periodic Systems with Applications to Sampled-Data Control," IEEE Transactions on Automatic Control, Vol. AC-37, 1992, pp. 418-435.

\author{
See Also \\ gapmetric|norm | hinfsyn | sdhinfsyn | sdlsim
}

\section*{sdhinfsyn}

Compute \(H_{\infty}\) controller for sampled-data system

\section*{Syntax}
[ K, GAM] =sdhinfsyn ( P, NMEAS, NCON )
[K, GAM]=sdhinfsyn(P, NMEAS, NCON, KEY1, VALUE1, KEY2, VALUE2, ...)

\section*{Description}
sdhinfsyn controls a continuous-time LTI system P with a discrete-time controller K. The continuous-time LTI plant \(P\) has a state-space realization partitioned as follows:
\[
P=\left[\begin{array}{c|cc}
A & B_{1} & B_{2} \\
\hline C_{1} & 0 & 0 \\
C_{2} & 0 & 0
\end{array}\right]
\]
where the continuous-time disturbance inputs enter through \(B_{1}\), the outputs from the controller are held constant between sampling instants and enter through \(B_{2}\), the continuous-time errors (to be kept small) correspond to the \(C_{1}\) partition, and the output measurements that are sampled by the controller correspond to the \(C_{2}\) partition. \(B_{2}\) has column size ncon and \(C_{2}\) has row size nmeas. Note that the \(D\) matrix must be zero.
sdhinfsyn synthesizes a discrete-time LTI controller K to achieve a given norm (if possible) or find the minimum possible norm to within tolerance TOLGAM.


Similar to hinfsyn, the function sdhinfsyn employs a \(\gamma\) iteration. Given a high and low value of \(\gamma\), GMAX and GMIN, the bisection method is used to iterate on the value of \(\gamma\) in an effort to approach the optimal \(H_{\infty}\) control design. If GMAX = GMIN, only one \(\gamma\) value is tested. The stopping criterion for the bisection algorithm requires that the relative difference between the last \(\gamma\) value that failed and the last \(\gamma\) value that passed be less than TOLGAM.

Input arguments
\begin{tabular}{|l|l|}
\hline\(P\) & LTI plant \\
\hline NMEAS & Number of measurements output to controller \\
\hline NCON & Number of control inputs \\
\hline
\end{tabular}

Optional input arguments (KEY, VALUE) pairs are similar to hinfsyn, but with additional KEY values 'Ts' and 'DELAY'.
\begin{tabular}{|l|l|l|}
\hline KEY & VALUE & Meaning \\
\hline 'GMAX' & real & Initial upper bound on GAM (default=Inf) \\
\hline 'GMIN ' & real & Initial lower bound on GAM (default=0) \\
\hline 'TOLGAM ' & real & Relative error tolerance for GAM (default=.01) \\
\hline 'Ts' & real & \begin{tabular}{l} 
(Default=1) sample time of the controller to be \\
designed
\end{tabular} \\
\hline 'DELAY' & integer & \begin{tabular}{l} 
(Default=0) a nonnegative integer giving the \\
number of sample periods delay for the control \\
computation
\end{tabular} \\
\hline 'DISPLAY' & 'off' & \begin{tabular}{l} 
(Default) no command window display, or the \\
command window displays synthesis progress \\
information
\end{tabular} \\
\hline
\end{tabular}

Output arguments
\begin{tabular}{l|l|}
\hline K & \(H_{\infty}\) controller \\
\hline GAM & Final \(\gamma\) value of \(H_{\infty}\) cost achieved \\
\hline
\end{tabular}

\section*{More About}

\section*{Algorithms}
sdhinfsyn uses a variation of the formulas described in the Bamieh and Pearson paper [1] to obtain an equivalent discrete-time system. (This is done to improve the numerical conditioning of the algorithms.) A preliminary step is to determine whether the norm of the continuous-time system over one sampling period without control is less than the given \(\gamma\)-value. This requires a search and is computationally a relatively expensive step.

\section*{References}
[1] Bamieh, B.A., and J.B. Pearson, "A General Framework for Linear Periodic Systems with Applications to Sampled-Data Control," IEEE Transactions on Automatic Control, Vol. AC-37, 1992, pp. 418-435.

\author{
See Also \\ norm | hinfsyn | sdhinfnorm
}

\section*{sdlsim}

Time response of sampled-data feedback system

\section*{Syntax}
```

sdlsim(p,k,w,t,tf)
sdlsim(p,k,w,t,tf,x0,z0)
sdlsim(p,k,w,t,tf,x0,z0,int)
[vt,yt,ut,t] = sdlsim(p,k,w,t,tf)
[vt,yt,ut,t] = sdlsim(p,k,w,t,tf,x0,z0,int)

```

\section*{Description}
sdlsim( \(p, k, w, t, t f)\) plots the time response of the hybrid feedback system. lft ( \(p, k\) ), is forced by the continuous input signal described by \(w\) and \(t\) (values and times, as in lsim). \(p\) must be a continuous-time LTI system, and \(k\) must be discrete-time LTI system with a specified sample time (the unspecified sample time -1 is not allowed). The final time is specified with tf .
\(\operatorname{sdl} \operatorname{sim}(p, k, w, t, t f, x 0, z 0)\) specifies the initial state vector \(x 0\) of \(p\), and \(z 0\) of \(k\), at time \(\mathrm{t}(1)\).
sdlsim( \(p, k, w, t, t f, x 0, z 0\), int) specifies the continuous-time integration step size int. sdlsim forces int \(=(\mathrm{k} . \mathrm{Ts}) / \mathrm{N}\) int where \(N>4\) is an integer. If any of these optional arguments is omitted, or passed as empty matrices, then default values are used. The default value for \(x 0\) and \(z 0\) is zero. Nonzero initial conditions are allowed for \(p\) (and/or k) only if \(p\) (and/or \(k\) ) is an ss object.

If \(p\) and/or \(k\) is an LTI array with consistent array dimensions, then the time simulation is performed pointwise across the array dimensions.
[vt,yt,ut,t] = sdlsim( \(\mathrm{p}, \mathrm{k}, \mathrm{w}, \mathrm{t}, \mathrm{tf}\) ) computes the continuous-time response of the hybrid feedback system lft ( \(\mathrm{p}, \mathrm{k}\) ) forced by the continuous input signal defined by
w and t (values and times, as in lsim). p must be a continuous-time system, and k must be discrete-time, with a specified sample time (the unspecified sample time -1 is not allowed). The final time is specified with \(t f\). The outputs vt, yt and ut are 2-by-1 cell arrays: in each the first entry is a time vector, and the second entry is the signal values. Stored in this manner, the signal vt is plotted by using one of the following commands:
```

plot(vt{1},vt{2})
plot(vt{:})

```

Signals yt and ut are respectively the input to \(k\) and output of \(k\).
If \(p\) and/or \(k\) are LTI arrays with consistent array dimensions, then the time simulation is performed pointwise across the array dimensions. The outputs are 2-by-1-by-array dimension cell arrays. All responses can be plotted simultaneously, for example, plot(vt).
[vt,yt,ut, t] = sdlsim(p,k,w,t,tf,x0,z0,int) The optional arguments are int (integration step size), \(x 0\) (initial condition for p ), and zO (initial condition for k ). sdlsim forces int \(=\) (k.Ts) \(/ N\), where \(N>4\) is an integer. If any of these arguments is omitted, or passed as empty matrices, then default values are used. The default value for x 0 and \(z 0\) is zero. Nonzero initial conditions are allowed for \(p\) (and/or \(k\) ) only if \(p\) (and/or \(k\) ) is an ss object.

\section*{Examples}

\section*{Time Response of Continuous Plant with Discrete Controller}

To illustrate the use of sdlsim, consider the application of a discrete controller to a plant with an integrator and near integrator. A continuous plant and a discrete controller are created. A sample-and-hold equivalent of the plant is formed and the discrete closed-loop system is calculated. Simulating this gives the system response at the sample points. sdlsim is then used to calculate the intersample behavior.
```

P = tf(1,[1, 1e-5,0]);
T = 1.0/20;
C = ss([-1.5 T/4; -2/T -.5],[. 5 2;1/T 1/T],...
[-1/T^2 -1.5/T], [1/T^2 0],T);
Pd = c2d(P,T,'zoh');

```

The closed-loop digital system is now set up. You can use sysic to construct the interconnected feedback system.
```

systemnames = 'Pd C';
inputvar = '[ref]';
outputvar = '[Pd]';
input_to_Pd = '[C]';
input_to_C = '[ref ; Pd]';
sysoutname = 'dclp';
cleanupsysic = 'yes';
sysic;

```

Use step to simulate the digital step response.
[yd,td] \(=\) step(dclp,20*T);
Set up the continuous interconnection and calculate the sampled data response with sdlsim.
```

M = [0,1;1,0;0,1]*blkdiag(1,P);
t = [0:.01:1]';
u = ones(size(t));
y1 = sdlsim(M,C,u,t);
plot(td,yd,'r*',y1{:},'b-')
axis([0,1,0,1.5])
xlabel('Time: seconds')
title('Step response: discrete (*) and continuous')

```

Step response: discrete (*) and continuous


You can see the effect of a nonzero initial condition in the continuous-time system. Note how examining the system at only the sample points will underestimate the amplitude of the overshoot.
```

y2 = sdlsim(M,C,u,t,1,0,[0.25;0]);
plot(td,yd,'r*',y1{:},'b-',y2{:},'g--')
axis([0,1,0,1.5])
xlabel('Time: seconds')
title('Step response: nonzero initial condition')

```

Step response: nonzero initial condition


Finally, you can examine the effect of a sinusoidal disturbance at the continuous-time plant output. This controller is not designed to reject such a disturbance and the system does not contain antialiasing filters. Simulating the effect of antialiasing filters is easily accomplished by including them in the continuous interconnection structure.
```

M2 = [0,1,1;1,0,0;0,1,1]*blkdiag(1,1,P);
t = [0:.001:1]';
dist = 0.1*sin(41*t);
u = ones(size(t));
[y3,meas,act] = sdlsim(M2,C,[u dist],t,1);
plot(y3{:},'-',t,dist,'b--',t,u,'g-.')
xlabel('Time: seconds')
title('Step response: disturbance (dashed) and output (solid)')

```


\section*{More About}

\section*{Algorithms}
sdlsim oversamples the continuous-time, \(N\) times the sample rate of the controller \(k\).
```

See Also
gapmetric | norm | hinfsyn | sdhinfnorm | sdhinfsyn | sysic

```

\section*{secif}

State-space sector bilinear transformation

\section*{Syntax}
```

[G,T] = sectf(F,SECF,SECG)

```

\section*{Description}
\([G, T]=\operatorname{sectf}(F, S E C F, S E C G)\) computes a linear fractional transform \(T\) such that the system lft \((F, K)\) is in sector SECF if and only if the system lft \((G, K)\) is in sector SECG where
\(G=\operatorname{lft}(T, F, N U, N Y)\)
where NU and NY are the dimensions of \(u_{T 2}\) and \(y_{T 2}\), respectively—see the following figure.


\section*{Sector transform G=lft (T, F, NU , NY).}
sectf are used to transform general conic-sector control system performance specifications into equivalent \(H_{\infty}\)-norm performance specifications.

\section*{Input Arguments}
\begin{tabular}{|l|l|l|}
\hline F & \begin{tabular}{l} 
LTI state-space \\
plant
\end{tabular} & \\
\hline \begin{tabular}{l} 
SECG, \\
SECF:
\end{tabular} & Conic Sector: & \\
\hline & {\([-1,1]\) or \([-1 ; 1]\)} & \(\|y\|^{2} \leq\|u\|^{2}\) \\
\hline & \begin{tabular}{l}
{\([0\), Inf \(]\) or } \\
{\([0 ;\) Inf \(]\)}
\end{tabular} & \(0 \leq \operatorname{Re}[y * u]\) \\
\hline
\end{tabular}

\section*{Input Arguments}
\begin{tabular}{|l|l|l|}
\hline & [A , B] or [A; B] & \(0 \geq \operatorname{Re}[(y-A u) *(y-B u)]\) \\
\hline & [a , b] or [a; b] & \(0 \geq \operatorname{Re}[(y-\operatorname{diag}(a) u) *(y-\operatorname{diag}(b) u)]\) \\
\hline & S & \(0 \geq \operatorname{Re}\left[\left(S_{11} u+S_{12} y\right) *\left(S_{21} u+S_{22} y\right)\right]\) \\
\hline & S & \(0 \geq \operatorname{Re}\left[\left(S_{11} u+S_{12} y\right) *\left(S_{21} u+S_{22} y\right)\right]\) \\
\hline
\end{tabular}
where \(A, B\) are scalars in \([-\infty, \infty]\) or square matrices; \(a, b\) are vectors; \(S=[S 11\) \(\mathrm{S} 12 ; \mathrm{S} 21, \mathrm{~S} 22\) ] is a square matrix whose blocks \(\mathrm{S} 11, \mathrm{~S} 12, \mathrm{~S} 21, \mathrm{~S} 22\) are either scalars or square matrices; \(S\) is a two-port system \(S=m k s y s(a, b 1, b 2, \ldots\), 'tss') with transfer function
\[
S(s)=\left[\begin{array}{ll}
S_{11}(s) & S_{12}(s) \\
S_{21}(s) & S_{22}(s)
\end{array}\right]
\]
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Output \\
Arguments
\end{tabular} & Description \\
\hline G & Transformed plant \(G(s)=1 f t \mathrm{f}(\mathrm{T}, \mathrm{F})\) \\
\hline T & LFT sector transform, maps conic sector SECF into conic sector SECG \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output Variables & \\
\hline G & The transformed plant \(G(s)=\operatorname{lftf}(\mathrm{T}, \mathrm{F}):\) \\
\hline T & The linear fractional transformation \(T(s)=\mathrm{T}\) \\
\hline
\end{tabular}

\section*{Examples}

The statement \(G(j \omega)\) inside sector \([-1,1]\) is equivalent to the \(H_{\infty}\) inequality
\[
\sup _{\omega} \bar{\sigma}(G(j \omega))=\|G\|_{\infty} \leq 1
\]

Given a two-port open-loop plant \(P(s):=\mathrm{P}\), the command \(\mathrm{P} 1=\operatorname{sectf}(\mathrm{P},[0, \mathrm{Inf}]\), \([-1,1])\) computes a transformed \(P_{1}(s):=\mathrm{P} 1\) such that if \(\operatorname{lft}(\mathrm{G}, \mathrm{K})\) is inside sector \([-1,1]\)
if and only if lft \((F, K)\) is inside sector \(\left[0,{ }_{\infty}\right]\). In other words, norm \((\operatorname{lft}(G, K)\), inf) \(<1\) if and only if lft ( \(F, K\) ) is strictly positive real. See Example of Sector Transform.


\section*{Sector Transform Block Diagram}

Here is a simple example of the sector transform.
\[
P(s)=\frac{1}{s+1} \in \operatorname{sector}[-1,1] \rightarrow P_{1}(s)=\frac{s+2}{2} \in \operatorname{sector}[0, \infty] .
\]

You can compute this by simply executing the following commands:
```

P = ss(tf(1,[1 1]));
P1 = sectf(P,[-1,1],[0,Inf]);

```

The Nyquist plots for this transformation are depicted in Example of Sector Transform. The condition \(P_{1}(s)\) inside \([0, \infty]\) implies that \(P_{1}(s)\) is stable and \(P_{1}(j \omega)\) is positive real, i.e.,
\[
P_{1}^{*}(j \omega)+P_{1}(j \omega) \geq 0 \quad \forall \omega
\]



\section*{Example of Sector Transform}

\section*{Limitations}

A well-posed conic sector must have \(\operatorname{det}(B-A) \neq 0\) or
\[
\operatorname{det}\left(\left[\begin{array}{ll}
s_{11} & s_{12} \\
s_{21} & s_{22}
\end{array}\right]\right) \neq 0
\]

Also, you must have \(\operatorname{dim}\left(u_{F 1}\right)=\operatorname{dim}\left(y_{F 1}\right)\) since sectors are only defined for square systems.

\section*{More About}

\section*{Algorithms}
sectf uses the generalization of the sector concept of [3] described by [1]. First the sector input data \(\mathrm{Sf}=\mathrm{SECF}\) and \(\mathrm{Sg}=\mathrm{SECG}\) is converted to two-port state-space form; nondynamical sectors are handled with empty \(a, b 1, b 2, c 1, c 2\) matrices. Next the equation
\[
S_{g( }(s)\left[\begin{array}{l}
u_{g_{1}} \\
y_{g_{1}}
\end{array}\right]=S_{f}(s)\left[\begin{array}{l}
u_{f_{1}} \\
y_{f_{1}}
\end{array}\right]
\]
is solved for the two-port transfer function \(T(s)\) from \(u_{g_{1}} y_{f_{1}}\) to \(u_{f_{1}} y_{g_{1}}\). Finally, the function lftf is used to compute \(G(s)\) as \(G=\operatorname{lftf}(\mathrm{T}, \mathrm{F})\).

\section*{References}
[1] Safonov, M.G., Stability and Robustness of Multivariable Feedback Systems. Cambridge, MA: MIT Press, 1980.
[2] Safonov, M.G., E.A. Jonckheere, M. Verma and D.J.N. Limebeer, "Synthesis of Positive Real Multivariable Feedback Systems," Int. J. Control, vol. 45, no. 3, pp. 817-842, 1987.
[3] Zames, G., "On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems \(\geq\) - Part I: Conditions Using Concepts of Loop Gain, Conicity, and Positivity," IEEE Trans. on Automat. Contr., AC-11, pp. 228-238, 1966.

\section*{See Also}
lft | hinfsyn

\section*{setlmis}

Initialize description of LMI system

\section*{Syntax}
```

setlmis(lmiO)

```

\section*{Description}

Before starting the description of a new LMI system with lmivar and lmiterm, type setlmis([])
to initialize its internal representation.
To add on to an existing LMI system, use the syntax
```

setlmis(lmiO)

```
where lmiO is the internal representation of this LMI system. Subsequent Imivar and lmiterm commands will then add new variables and terms to the initial LMI system lmio.

\author{
See Also \\ getlmis | newlmi | lmivar | lmiterm
}

\section*{setmvar}

Instantiate matrix variable and evaluate all LMI terms involving this matrix variable

\section*{Syntax}
```

mnewsys = setmvar(lmisys,X,Xval)

```

\section*{Description}
setmvar sets the matrix variable \(X\) with identifier X to the value Xval . All terms involving \(X\) are evaluated, the constant terms are updated accordingly, and \(X\) is removed from the list of matrix variables. A description of the resulting LMI system is returned in newsys.

The integer X is the identifier returned by lmivar when \(X\) is declared. Instantiating \(X\) with setmvar does not alter the identifiers of the remaining matrix variables.

The function setmvar is useful to freeze certain matrix variables and optimize with respect to the remaining ones. It saves time by avoiding partial or complete redefinition of the set of LMI constraints.

\section*{Examples}

Consider the system
\(x=A x+B u\)
and the problem of finding a stabilizing state-feedback law \(u=K x\) where \(K\) is an unknown matrix.

By the Lyapunov Theorem, this is equivalent to finding \(P>0\) and \(K\) such that \((A+B K) P+P\left(A+B K^{T}\right)+I<0\).

With the change of variable \(Y:=K P\), this condition reduces to the LMI \(A P+P A^{T}+B Y+Y^{T} B^{T}+I<0\).

This LMI is entered by the commands
```

n = size(A,1) % number of states
ncon = size(B,2) % number of inputs
setlmis([])
P = lmivar(1,[n 1]) % P full symmetric
Y = lmivar(2,[ncon n]) % Y rectangular
lmiterm([11 1 1 1 P],A,1,'s') % AP+PA'
lmiterm([[1 1 1 1 Y Y],B,1,'s') % BY+Y'B'
lmiterm([1 1 1 1 0],1) % I
lmis = getlmis

```

To find out whether this problem has a solution \(K\) for the particular Lyapunov matrix \(P=\) \(I\), set \(P\) to \(I\) by typing
```

news = setmvar(lmis,P,1)

```

The resulting LMI system news has only one variable \(Y=K\). Its feasibility is assessed by calling feasp:
[tmin, xfeas] = feasp(news)
\(Y\) = dec2mat (news, xfeas, \(Y\) )
The computed \(Y\) is feasible whenever tmin \(<0\).

\section*{See Also}
evallmi | delmvar

\section*{showlmi}

Return left and right sides of LMI after evaluation of all variable terms

\section*{Syntax}
[lhs,rhs] = showlmi(evalsys,n)

\section*{Description}

For given values of the decision variables, the function evallmi evaluates all variable terms in a system of LMIs. The left and right sides of the \(n\)-th LMI are then constant matrices that can be displayed with showlmi. If evalsys is the output of evallmi, the values lhs and rhs of these left and right sides are given by
[lhs,rhs] = showlmi(evalsys,n)
An error is issued if evalsys still contains variable terms.

\section*{Examples}

See the description of evallmi.

\section*{See Also}
evallmi \| setmvar

\section*{simplify}

Simplify representation of uncertain object

\section*{Syntax}
```

B = simplify(A)
B = simplify(A,'full')
B = simplify(A,'basic')
B = simplify(A,'class')

```

\section*{Description}
\(B=\) simplify (A) performs model-reduction-like techniques to detect and eliminate redundant copies of uncertain elements. Depending on the result, the class of B may be lower than A. The AutoSimplify property of each uncertain element in A governs what reduction methods are used. After reduction, any uncertain element which does not actually affect the result is deleted from the representation.

B = simplify(A,'full') overrides all uncertain element's AutoSimplify property, and uses 'full' reduction techniques.

B = simplify(A,'basic') overrides all uncertain element's AutoSimplify property, and uses 'basic' reduction techniques.
\(B=\) simplify(A,'class') does not perform reduction. However, any uncertain elements in A with zero occurences are eliminated, and the class of \(B\) may be lower than the class of \(A\).

\section*{Examples}

Create a simple umat with a single uncertain real parameter. Select specific elements, note that result remains in class umat. Simplify those same elements, and note that class changes.
```

p1 = ureal('p1',3,'Range',[2 5]);

```
```

L = [2 p1];
L(1)
UMAT: 1 Rows, 1 Columns
L(2)
UMAT: 1 Rows, 1 Columns
p1: real, nominal = 3, range = [2 5], 1 occurrence
simplify(L(1))
ans =
2
simplify(L(2))
Uncertain Real Parameter: Name p1, NominalValue 3, Range [2 5]
Create four uncertain real parameters, with a default value of AutoSimplify('basic'), and define a high order polynomial [1].

```
```

m = ureal('m',125000,'Range',[100000 150000]);

```
m = ureal('m',125000,'Range',[100000 150000]);
xcg = ureal('xcg',.23,'Range',[.15 .31]);
xcg = ureal('xcg',.23,'Range',[.15 .31]);
zcg = ureal('zcg',.105,'Range',[0 .21]);
zcg = ureal('zcg',.105,'Range',[0 .21]);
va = ureal('va',80,'Range',[70 90]);
va = ureal('va',80,'Range',[70 90]);
cw = simplify(m/(va*va)*va,'full')
cw = simplify(m/(va*va)*va,'full')
UMAT: 1 Rows, 1 Columns
UMAT: 1 Rows, 1 Columns
    m: real, nominal = 1.25e+005, range = [100000 150000],
    m: real, nominal = 1.25e+005, range = [100000 150000],
1 occurrence
1 occurrence
    va: real, nominal = 80, range = [70 90], 1 occurrence
    va: real, nominal = 80, range = [70 90], 1 occurrence
cw = m/va;
cw = m/va;
fac2 = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ...
fac2 = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ...
        -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ...
        -3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ...
        -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ...
        -.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ...
        + 4.9*xcg*cw - 2.7*xcg*cw*cw ...
        + 4.9*xcg*cw - 2.7*xcg*cw*cw ...
        +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ...
        +.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ...
        +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ...
        +100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ...
        +1.12*xcg*zcg + 24.6*cw*zcg ...
        +1.12*xcg*zcg + 24.6*cw*zcg ...
        +.45*xcg*xcg*cw*cw - 46.85
        +.45*xcg*xcg*cw*cw - 46.85
UMAT: 1 Rows, 1 Columns
UMAT: 1 Rows, 1 Columns
    m: real, nominal = 1.25e+005, range = [100000 150000],
    m: real, nominal = 1.25e+005, range = [100000 150000],
18 occurrences
18 occurrences
    va: real, nominal = 80, range = [70 90], 8 occurrences
    va: real, nominal = 80, range = [70 90], 8 occurrences
    xcg: real, nominal = 0.23, range = [0.15 0.31], 18 occurrences
    xcg: real, nominal = 0.23, range = [0.15 0.31], 18 occurrences
    zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
```

 zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence
    ```

The result of the high-order polynomial is an inefficient representation involving 18 copies of \(m, 8\) copies of va, 18 copies of \(x c g\) and 1 copy of \(z c g\). Simplify the expression, using the 'full' simplification algorithm
```

fac2s = simplify(fac2,'full')

```
```

UMAT: 1 Rows, 1 Columns
m: real, nominal = 1.25e+005, range = [100000 150000],
4 occurrences
va: real, nominal = 80, range = [70 90], 4 occurrences
xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences
zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence

```
which results in a much more economical representation.
Alternatively, change the AutoSimplify property of each parameter to 'full' before forming the polynomial.
```

m.AutoSimplify = 'full';
xcg.AutoSimplify = 'full';
zcg.AutoSimplify = 'full';
va.AutoSimplify = 'full';

```

You can form the polynomial, which immediately gives a low order representation.
```

cw = m/va;
fac2f = .16726*xcg*cw*cw*zcg - .17230*xcg*xcg*cw ...
-3.9*xcg*cw*zcg - .28*xcg*xcg*cw*cw*zcg ...
-.07*xcg*xcg*zcg + .29*xcg*xcg*cw*zcg ...
+ 4.9*xcg*cw - 2.7*xcg*cw*cw ...
+.58*cw*cw - 0.25*xcg*xcg - 1.34*cw ...
+100.1*xcg -14.1*zcg - 1.91*cw*cw*zcg ...
+1.12*xcg*zcg + 24.6*cw*zcg ...
+.45*xcg*xcg*cw*cw - 46.85
UMAT: 1 Rows, 1 Columns
m: real, nominal = 1.25e+005, range = [100000 150000],
4 occurrences
va: real, nominal = 80, range = [70 90], 4 occurrences
xcg: real, nominal = 0.23, range = [0.15 0.31], 2 occurrences
zcg: real, nominal = 0.105, range = [0 0.21], 1 occurrence

```

Create two real parameters, da and dx, and a 2 -by- 3 matrix, ABmat, involving polynomial expressions in the two real parameters.
```

da = ureal('da',0,'Range',[-1 1]);
dx = ureal('dx',0,'Range',[-1 1]);
a11 = -. 32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx;
a12 = . 934 + da*(.0474 - .302*da);
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ...
+ dx*(9.65 - da*(55.7 + da*177));
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da);

```
```

b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx;
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx;
ABmat = [a11 a12 b1;a21 a22 b2]
UMAT: 2 Rows, 3 Columns
da: real, nominal = 0, range = [-1 1], 19 occurrences
dx: real, nominal = 0, range = [-1 1], 2 occurrences

```

Use 'full' simplification to reduce the complexity of the description.
```

ABmatsimp = simplify(ABmat,'full')
UMAT: 2 Rows, 3 Columns
da: real, nominal = 0, range = [-1 1], 7 occurrences
dx: real, nominal = 0, range = [-1 1], 2 occurrences

```

Alternatively, you can set the parameter's AutoSimplify property to 'full'.
```

da.AutoSimplify = 'full';
dx.AutoSimplify = 'full';

```

Now you can rebuild the matrix
```

a11 = -. 32 + da*(.8089 + da*(-.987 + 3.39*da)) + .15*dx;
a12 = . 934 + da*(.0474 - .302*da);
a21 = -1.15 + da*(4.39 + da*(21.97 - 561*da*da)) ...
+ dx*(9.65 - da*(55.7 + da*177));
a22 = -.66 + da*(1.2 - da*2.27) + dx*(2.66 - 5.1*da);
b1 = -0.00071 + da*(0.00175 - da*.00308) + .0011*dx;
b2 = -0.031 + da*(.078 + da*(-.464 + 1.37*da)) + .0072*dx;
ABmatFull = [a11 a12 b1;a21 a22 b2]
UMAT: 2 Rows, 3 Columns
da: real, nominal = 0, range = [-1 1], 7 occurrences
dx: real, nominal = 0, range = [-1 1], 2 occurrences

```

\section*{Limitations}

Multidimensional model reduction and realization theory are only partially complete theories. The heuristics used by simplify are that - heuristics. The order in which expressions involving uncertain elements are built up, eg., distributing across addition and multiplication, can affect the details of the representation (i.e., the number of occurences of a ureal in an uncertain matrix). It is possible that simplify's naive methods cannot completely resolve these differences, so one may be forced to work with "nonminimal" representations of uncertain systems.

\section*{More About}

\section*{Algorithms}
simplify uses heuristics along with one-dimensional model reduction algorithms to partially reduce the dimensionality of the representation of an uncertain matrix or system.

\section*{References}
[1] Varga, A. and G. Looye, "Symbolic and numerical software tools for LFT-based low order uncertainty modeling," IEEE International Symposium on Computer Aided Control System Design, 1999, pp. 5-11.
[2] Belcastro, C.M., K.B. Lim and E.A. Morelli, "Computer aided uncertainty modeling for nonlinear parameter-dependent systems Part II: F-16 example," IEEE International Symposium on Computer Aided Control System Design, 1999, pp. 17-23.

\author{
See Also \\ umat | uss | ucomplex | ureal | uss
}

\section*{skewdec}

Form skew-symmetric matrix

\section*{Syntax}
\(\mathrm{x}=\operatorname{skewdec}(\mathrm{m}, \mathrm{n})\)

\section*{Description}
skewdec ( \(m, n\) ) forms the m-by-m skew-symmetric matrix
\[
\left[\begin{array}{cccc}
0 & -(n-1) & -(n-2) & \ldots \\
(n+1) & 0 & -(n-3) & \ldots \\
(n+2) & (n+3) & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right]
\]

This function is useful to define skew-symmetric matrix variables. In this case, set n to the number of decision variables already used.

\author{
See Also \\ decinfo | lmivar
}

\section*{slowfast}

Slow and fast modes decomposition

\section*{Syntax}
[G1,G2] = slowfast(G,ns)

\section*{Description}
slowfast computes the slow and fast modes decompositions of a system \(G(s)\) such that \(G(s)=\left[G_{1}(s)\right]+\left[G_{2}(s)\right]\)
\(\mathrm{G}(\mathrm{s})\) contains the N slowest modes (modes with the smallest absolute value) of G .
\(\left[G_{1}(s)\right]:=\left(A_{11}, B_{1}, C_{1}, D_{1}\right)\) denotes the slow part of \(G(s)\). The slow poles have low frequency and magnitude values.
\(\left[G_{2}(s)\right]:=\left(A_{22}, B_{2}, C_{2}, D_{2}\right)\) denotes the fast part. The fast poles have high frequency and magnitude values.

The variable ns denotes the index where the modes will be split.
Use freqsep to separate slow and fast modes at a specified cutoff frequency instead of a specified number of modes.

\section*{References}
M.G. Safonov, E.A. Jonckheere, M. Verma and D.J.N. Limebeer, "Synthesis of Positive Real Multivariable Feedback Systems", Int. J. Control, vol. 45, no. 3, pp. 817-842, 1987.

\author{
See Also \\ schur | modreal | freqsep
}

\section*{squeeze}

Remove singleton dimensions for umat objects

\section*{Syntax}
\(B=\) squeeze(A)

\section*{Description}
\(B=\) squeeze \((A)\) returns an array \(B\) with the same elements as \(A\) but with all the singleton dimensions removed. A singleton is a dimension such that size ( \(\mathrm{A}, \mathrm{dim}\) )==1. \(2-\mathrm{D}\) arrays are unaffected by squeeze so that row vectors remain rows.

\author{
See Also \\ permute | reshape
}

\section*{uss/ssbal}

Scale state/uncertainty while preserving uncertain input/output map of uncertain system

\section*{Syntax}
```

usysout = ssbal(usys)
usysout = ssbal(usys,wc)
usysout = ssbal(usys,wc,FSflag)
usysout = ssbal(usys,wc,FSflag,BLTflag)

```

\section*{Description}
usysout = ssbal(usys) yields a system whose input/output and uncertain properties are the same as usys, a uss object. The numerical conditioning of usysout is usually better than that of usys, improving the accuracy of additional computations performed with usysout. usysout is a uss object. The balancing algorithm uses mussv to balance the constant uncertain state-space matrices in discrete time. If usys is a continuous-time uncertain system, the uncertain state-space is mapped by using a bilinear transformation into discrete time for balancing.
usysout \(=\) ssbal(usys,wc) defines the critical frequency wc for the bilinear prewarp transformation from continuous time to discrete time. The default value of wc is 1 when the nominal uncertain system is stable and \(1.25 *\) mxeig when it is unstable. mxeig corresponds to the value of the real, most positive pole of usys.
usysout = ssbal(usys,wc, FSflag) sets the scaling flag FSflag to handle repeated uncertain parameters. Setting FSflag=1 uses full matrix scalings to balance the repeated uncertain parameter blocks. \(\mathrm{FSflag}=0\), the default, uses a single, positive scalar to balance the repeated uncertain parameter blocks.
usysout = ssbal(usys,wc, FSflag,BLTflag) sets the bilinear transformation flag, BLTflag. By default, BLTflag=1 transforms the continuous-time system usys to a discrete-time system for balancing. BLTflag=0 results in balancing the continuoustime state-space data from usys. Note that if usys is a discrete-time system, no bilinear transformation is performed.
ssbal does not work on an array of uncertain systems. An error message is generated to alert you to this.

\section*{Examples}

Consider a two-input, two-output, two-state uncertain system with two real parameter uncertainties, p1 and p2.
```

p2=ureal('p2',-17,'Range',[-19 -11]);
p1=ureal('p1',3.2,'Percentage',0.43);
A = [-12 p1;.001 p2];
B = [120 - 809;503 24];
C = [.034 .0076; .00019 2];
usys = ss(A,B,C,zeros(2,2))
USS: 2 States, 2 Outputs, 2 Inputs, Continuous System
p1: real, nominal = 3.2, variability = [-0.43 0.43]%, 1 occurrence
p2: real, nominal = -17, range = [-19 -11], 1 occurrence
usys.NominalValue
a =
x2
x2 0.001 -17
b =
}\begin{array}{rrr}{u1}\&{u2}
{\times1 120}\&{-809}
x2 503 24
c =
y1 0.034 0.0076
y2 0.00019 2
d =
y1 u1 u2
y1 0}
y2 0 0
Continuous-time model.
ssbal is used to balance the uncertain system usys.
usysout = ssbal(usys)
USS: 2 States, 2 Outputs, 2 Inputs, Continuous System
p1: real, nominal = 3.2, variability = [-0.43 0.43]%,
1 occurrence
p2: real, nominal = -17, range = [-19 -11], 1 occurrence
usysout.NominalValue
a =
crerere

```
```

 x2 0.009692 -17
 b =

| | $u 1$ | $u 2$ |
| ---: | ---: | ---: |
| $\times 1$ | 0.7802 | -5.26 |
| $x 2$ | 31.7 | 1.512 |

c =

| | x1 | x2 |
| :--- | ---: | ---: |
| y1 | 5.229 | 0.1206 |
| y2 | 0.02922 | 31.74 |

d $=$

| | u 1 | u 2 |
| :--- | ---: | ---: |
| y 1 | 0 | 0 |
| y 2 | 0 | 0 |

Continuous-time model.

```

\section*{See Also}
canon | c2d | d2c | mussv | mussvextract | ss2ss

\section*{stack}

Construct array by stacking uncertain matrices, models, or arrays

\section*{Syntax}
```

umatout = stack(arraydim,umat1,umat2,...)
usysout = stack(arraydim,usys1,usys2,...)

```

\section*{Description}
stack constructs an uncertain array by stacking uncertain matrices, models, or arrays along array dimensions of an uncertain array.
umatout = stack(arraydim, umat1, umat2, ...) produces an array of uncertain matrices, umatout, by stacking (concatenating) the umat matrices (or umat arrays) umat1, umat2,... along the array dimension arraydim. All models must have the same number of columns and rows. The column/row dimensions are not counted in the array dimensions.
umatout = stack(arraydim, usys1,usys2,...) produces an array of uncertain models, ufrd or uss, or usysout, by stacking (concatenating) the ufrd or uss matrices (or ufrd or uss arrays) usys1, usys \(2, \ldots\) along the array dimension arraydim. All models must have the same number of columns and rows (the same input/output dimensions). Note that the input/output dimensions are not considered for arrays.

\section*{Examples}

Consider usys1 and usys2, two single-input/single-output uss models:
```

zeta = ureal('zeta',1,'Range',[0.4 4]);
wn = ureal('wn',0.5,'Range',[0.3 0.7]);
P1 = tf(1,[1 2*zeta*wn wn^2]);
P2 = tf(zeta,[1 10]);

```

You can stack along the first dimension to produce a 2 -by- 1 uss array.
```

stack(1,P1,P1)
USS: 2 States, 1 Output, 1 Input, Continuous System [array, 2 x 1]
wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences
zeta: real, nominal = 1, range = [0.4 4], 1 occurrence

```

You can stack along the second dimension to produce a 1-by-2 uss array.
```

stack(2,P1,P2) % produces a 1-by-2 USS array.
USS: 2 States, 1 Output, 1 Input, Continuous System [array, 1 x 2]
wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences
zeta: real, nominal = 1, range = [0.4 4], 1 occurrence

```

You can stack along the third dimension to produce a 1-by-1-by-2 uss array.
```

stack(3,P1,P2) % produces a 1-by-1-by-2 USS array.
USS: 2 States, 1 Output, 1 Input, Continuous System
[array, 1 x 1 x 2]
wn: real, nominal = 0.5, range = [0.3 0.7], 3 occurrences
zeta: real, nominal = 1, range = [0.4 4], 1 occurrence

```

\section*{See Also}
append | blkdiag | horzcat | vertcat

\section*{symdec}

Form symmetric matrix

\section*{Syntax}
```

x = symdec(m,n)

```

\section*{Description}
symdec ( \(m, n\) ) forms an \(m\)-by-m symmetric matrix of the form
\[
\left[\begin{array}{cccc}
(n+1) & (n+2) & (n+4) & \ldots \\
(n+2) & (n+3) & (n+5) & \ldots \\
(n+4) & (n+5) & (n+6) & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots
\end{array}\right]
\]

This function is useful to define symmetric matrix variables. n is the number of decision variables.

\author{
See Also \\ decinfo
}

\section*{sysic}

Build interconnections of certain and uncertain matrices and systems

\section*{Syntax}
```

sysout = sysic

```

\section*{Description}
sysic requires that 3 variables with fixed names be present in the calling workspace: systemnames, inputvar and outputvar.
systemnames is a char containing the names of the subsystems (double, tf, zpk, ss, uss, frd, ufrd, etc) that make up the interconnection. The names must be separated by spaces with no additional punctuation. Each named variable must exist in the calling workspace.
inputvar is a char, defining the names of the external inputs to the interconnection. The names are separated by semicolons, and the entire list is enclosed in square brackets [ ]. Inputs can be scalar or multivariate. For instance, a 3 -component ( \(x, y, z\) ) force input can be specified with 3 separate names, Fx, Fy, Fz. Alternatively, a single name with a defined integer dimension can be specified, as in \(F\{3\}\). The order of names in inputvar determines the order of inputs in the interconnection.
outputvar is a char, describing the outputs of the interconnection. Outputs do not have names-they are simply linear combinations of individual subsystem's outputs and external inputs. Semicolons delineate separate components of the interconnections outputs. Between semicolons, signals can be added and subtracted, and multiplied by scalars. For multivariable subsystems, arguments within parentheses specify which subsystem outputs are to be used and in what order. For instance, plant (2:4, 1, 9:11) specifies outputs \(2,3,4,1,9,10,11\) from the subsystem plant. If a subsystem is listed in outputvar without arguments, then all outputs from that subsystem are used.
sysic also requires that for every subsystem name listed in systemnames, a corresponding variable, input_to_ListedSubSystemName must exist in the calling workspace. This variable is similar to outputvar - it defines the input signals to this
particular subsystem as linear combinations of individual subsystem's outputs and external inputs.
sysout \(=\) sysic will perform the interconnection described by the variables above, using the subsystem data in the names found in systemnames. The resulting interconnection is returned in the output argument, listed above as sysout.

After running sysic the variables systemnames, inputvar, outputvar and all of the input_to_ListedSubSystemName will exist in the workspace. Setting the optional variable cleanupsysic to 'yes ' will cause these variables to be removed from the workspace after sysic has formed the interconnection.

\section*{Examples}

A simple system interconnection, identical to the system illustrated in the iconnect description. Consider a three-input, two-output LTI matrix \(T\),

which has internal structure

```

A = rss(1,1,1);
W = rss(1,1,1);
systemnames = 'W A K P';
inputvar = '[noise;deltemp;setpoint]';
outputvar = '[57.3*P(1);setpoint-P(2)]';
input_to_W = '[deltemp]';
input_to_A = '[K]';
input_to_K = '[P(2)+noise;setpoint]';
input_to_P = '[W;A]';
cleanupsȳsic = 'yes';
T = sysic;
exist(`inputvar')

```

\section*{Limitations}

The syntax of sysic is limited, and for the most part is restricted to what is shown here. The iconnect interconnection object can also be used to define complex interconnections, and has a more flexible syntax.

Within sysic, error-checking routines monitor the consistency and availability of the subsystems and their inputs. These routines provide a basic level of error detection to aid the user in debugging.

\author{
See Also \\ iconnect
}

\section*{ucomplex}

Create uncertain complex parameter

\section*{Syntax}

A = ucomplex('NAME', nominalvalue)
A = ucomplex('NAME', nominalvalue,'Property1',Value1,...
'Property2', Value2,...)

\section*{Description}

An uncertain complex parameter is used to represent a complex number whose value is uncertain. Uncertain complex parameters have a name (the Name property), and a nominal value (the NominalValue property).

The uncertainty (potential deviation from the nominal value) is described in two different manners:
- Radius (radius of disc centered at NominalValue)
- Percentage (disc size is percentage of magnitude of NominalValue)

The Mode property determines which description remains invariant if the NominalValue is changed (the other is derived). The default Mode is 'Radius' and the default radius is 1 .

Property/Value pairs can also be specified at creation. For instance,
B = ucomplex('B',6-j,'Percentage',25)
sets the nominal value to 6 - j, the percentage uncertainty to 25 and, implicitly, the Mode to 'Percentage'.

\section*{Examples}

\section*{Sample Uncertain Complex Parameter}

Compute 400 random samples of an uncertain complex parameter and visualize them in a plot.

Create an uncertain complex parameter with internal name A.
```

A = ucomplex('A',4+3*j)
A =
Uncertain complex parameter "A" with nominal value 4+3i and radius 1.

```

The uncertain parameter's possible values are a complex disc of radius 1 , centered at 4 \(+3 \_j \_\). The value of A. percentage is 20 (radius is \(1 / 5\) of the magnitude of the nominal value).

You can visualize the uncertain complex parameter by sampling and plotting the data.
```

sa = usample(A,400);
w = linspace(0,2*pi,200);
circ = sin(w) + j*cos(w);
rc = real(A.NominalValue+circ);
ic = imag(A.NominalValue+circ);
plot(real(sa(:)),imag(sa(:)),'o',rc,ic,'k-')
xlim([2.5 5.5])
ylim([1.5 4.5])
axis equal

```


\section*{See Also}
get | umat | ucomplexm | ureal \| ultidyn

\section*{ucomplexm}

Create uncertain complex matrix

\section*{Syntax}
```

M = ucomplexm('Name',NominalValue)
M = ucomplexm('Name',NominalValue,'WL',WLvalue,'WR',WRvalue)
M = ucomplexm('Name',NominalValue,'Property',Value)

```

\section*{Description}
\(M=\) ucomplexm('Name',NominalValue) creates an uncertain complex matrix representing a ball of complex-valued matrices, centered at a NominalValue and named Name.

M = ucomplexm('Name',NominalValue, 'WL',WLvalue,'WR',WRvalue) creates an uncertain complex matrix with weights WL and WR. Specifically, the values represented by \(M\) are all matrices \(H\) that satisfy norm (inv (M.WL)* (H M. NominalValue)*inv(M.WR)) <= 1. WL and WR are square, invertible, and weighting matrices that quantify the size and shape of the ball of matrices represented by this object. The default values for WL and WR are identity matrices of appropriate dimensions.

Trailing Property/Value pairs are allowed, as in
M = ucomplexm('NAME', nominalvalue,'P1',V1,'P2',V2,...)
The property AutoSimplify controls how expressions involving the uncertain matrix are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off'', no simplification performed, and 'full' which applies model-reductionlike techniques to the uncertain object.

\section*{Examples}

\section*{Sample an Uncertain Complex Matrix}

Create a ucomplexm with the name \(F\), nominal value [ \(\left.\begin{array}{ccccc}1 & 2 & 3 ; ~ 4 ~ 6\end{array}\right]\), and weighting matrices WL \(=\operatorname{diag}([.1 .3])\), \(\mathrm{WR}=\operatorname{diag}\left(\left[\begin{array}{lll}4 & .8 & 1.2]) \text {. }\end{array}\right.\right.\)
```

F = ucomplexm('F',[1 2 3;4 5 6],'WL',diag([.1 .3]),...

```
    'WR', diag([.4 .8 1.2]))
```

F =
Uncertain complex matrix "F" with 2 rows and 3 columns.

```

Sample the difference between the uncertain matrix and its nominal value at 80 points, yielding a 2 -by- 3 -by- 80 matrix typicaldev.
```

typicaldev = usample(F - F.NominalValue,80);

```

Plot histograms of the deviations in the \((1,1)\) entry and the \((2,3)\) entry of the complex matrix.

The absolute values of the \((1,1)\) entry and the \((2,3)\) entry are shown by histogram plots. Typical deviations in the ( 1,1 ) entry should be about 10 times smaller than the typical deviations in the \((2,3)\) entry.
```

subplot(2,1,1);
td11 = squeeze(typicaldev(1,1,:));
hist(abs(td11));
xlim([0 .25])
title('Sampled F(1,1) - F(1,1).NominalValue')
subplot(2,1,2);
td23 = squeeze(typicaldev(2,3,:));
hist(abs(td23));
title('Sampled F(2,3) - F(2,3).NominalValue')

```


\author{
See Also \\ get | umat | ucomplex | ureal | ultidyn
}

\section*{ucover}

Fit an uncertain model to set of LTI responses

\section*{Syntax}
```

usys = ucover(Parray,Pnom,ord)
usys = ucover(Parray,Pnom,ord1,ord2,utype)
[usys,info] = ucover(Parray,...)
[usys_new,info_new] = ucover(Pnom,info,ord1_new,ord2_new)

```

\section*{Description}
usys \(=\) ucover(Parray, Pnom, ord) returns an uncertain model usys with nominal value Pnom and whose range of behaviors includes all responses in the LTI array Parray. The uncertain model structure is of the form usys \(=\operatorname{Pnom}(1+W(s) \Delta(s))\), where
- \(\Delta\) is an ultidyn object that represents uncertain dynamics with unit peak gain.
- \(W\) is a stable, minimum-phase shaping filter that adjusts the amount of uncertainty at each frequency.
ord is the number of states (order) of \(W\). Pnom and Parray can be ss, tf, zpk, or zpk models. usys is of class ufrd when Pnom is an frd model and is an uss model otherwise.
usys \(=\) ucover(Parray,Pnom,ord1,ord2, utype) specifies the order ord1 and ord2 of each diagonal entry of \(W 1\) and \(W 2\), where \(W 1\) and \(W 2\) are diagonal, stable, minimumphase shaping filters. utype specifies the uncertain model structure, as described in "Uncertain Model Structures" on page 1-368, and can be 'InputMult' (default), 'OutputMult' or 'Additive'. ord1 and ord2 can be:
- [ ], which implies that the corresponding filter is 1 .
- Scalar, which implies that the corresponding filter is scalar-valued.
- Vectors with as many entries as diagonal entries in \(W 1\) and \(W 2\).
[usys,info] = ucover(Parray,...) returns a structure info that contains optimization information. info.W1opt and Info.W2opt contain the values of W1 and

W2 computed on a frequency grid and info.W1 and info.W2 contain the fitted shaping filters W1 and W2.
[usys_new,info_new] = ucover(Pnom,info,ord1_new,ord2_new) improves the fit using initial filter values in info and new orders ord1_new and ord2_new of \(W 1\) and \(W 2\). This syntax speeds up command execution by reusing previously computed information. Use this syntax when you are changing filter orders in an iterative workflow.

\section*{Examples}

\section*{Fit Uncertain Model to Array of LTI Responses}

Fit an uncertain model to an array of LTI responses. The responses might be, for example, the results of multiple runs of acquisition of frequency response data from a physical system.

For the purpose of this example, generate the frequency response data by creating an array of LTI models and sampling the frequency response of those models.
```

Pnom = tf(2,[[1-2]);
p1 = Pnom*tf(1,[.06 1]);
p2 = Pnom*tf([-.02 1],[.02 1]);
p3 = Pnom*tf(50^2,[1 2*.1*50 50^2]);
array = stack(1, p1,p2,p3);
Parray = frd(array,logspace(-1,3,60));

```

The frequency response data in Parray represents three separate data acquisition experiments on the system.

Plot relative errors between the nominal plant response and the three models in the LTI array.
```

relerr = (Pnom-Parray)/Pnom;
bodemag(relerr)

```

Bode Diagram


If you use a multiplicative uncertainty model structure, the magnitude of the shaping filter should fit the maximum relative errors at each frequency.

Try a 1st-order shaping filter to fit the maximum relative errors.
[P,Info] = ucover(Parray,Pnom,1);
Plot the response to see how well the shaping filter fits the relative errors.
bodemag(relerr,'b--',Info.W1,'r',\{0.1,1000\});


The plot shows that the filter W1 is too conservative and exceeds the maximum relative error at most frequencies. To obtain a tighter fit, rerun the function using a 4th-order filter.
[P,Info] = ucover(Parray,Pnom,4);
Evaluate the fit by plotting the Bode magnitude plot.
bodemag(relerr,'b--',Info.W1, 'r', \(\{0.1,1000\}\) );

Bode Diagram


This plot shows that for the 4th-order filter, the magnitude of W1 closely matches the minimum uncertainty amount.

\section*{Tutorials}
- Modeling a Family of Responses as an Uncertain System
- Simultaneous Stabilization Using Robust Control
- First-Cut Robust Design

\section*{More About}

\section*{Uncertain Model Structures}

When fitting the responses of LTI models in Parray, the gaps between Parray and the nominal response Pnom of the uncertain model are modeled as uncertainty on the system dynamics. To model the frequency distribution of these unmodeled dynamics, ucover measures the gap between Pnom and Parray at each frequency and selects a shaping filter \(W\) whose magnitude approximates the maximum gap between Pnom and Parray. The following figure shows the relative gap between the nominal response and six LTI responses, enveloped using a second-order shaping filter.


The software then sets the uncertainty to \(W \cdot \Delta\), where \(\Delta\) is an ultidyn object that represents unit-gain uncertain dynamics. This ensures that the amount of uncertainty
at each frequency is specified by the magnitude of \(W\) and therefore closely tracks the gap between Pnom and Parray.

There are three possible uncertainty model structures:
- Input Multiplicative of the form usys \(=\) Pnom \(\times\left(I+W_{1} \times \Delta \times W_{2}\right)\).
- Output Multiplicative of the form usys \(=(I+W 1 \times \Delta \times W 2) \times\) Pnom.
- Additive of the form usys \(=\) Pnom \(+W 1 \times \Delta \times W_{2}\).

Use additive uncertainty to model the absolute gaps between Pnom and Parray, and multiplicative uncertainty to model relative gaps.

Note For SISO models, input and output multiplicative uncertainty are equivalent. For MIMO systems with more outputs than inputs, the input multiplicative structure may be too restrictive and not adequately cover the range of models.

The model structure usys \(=\) Pnom \(\times(I+W \times \Delta)\) that you obtain using usys \(=\) ucover (Parray, Pnom, ord), corresponds to \(W_{1}=W \times I\) and \(W_{1}=1\).

\section*{Algorithms}

The ucover command designs the minimum-phase shaping filters \(W_{1}\) and \(W_{2}\) in two steps:

1 Computes the optimal values of \(W_{1}\) and \(W_{2}\) on a frequency grid.
2 Fits \(W_{1}\) and \(W_{2}\) values with the dynamic filters of the specified orders using the fitmagfrd command.

\section*{See Also}
ss | tf | zpk | frd | usample

\section*{udyn}

Create unstructured uncertain dynamic system object

\section*{Syntax}
n = udyn('name',iosize);

\section*{Description}
n = udyn('name',iosize) creates an unstructured uncertain dynamic system class, with input/output dimension specified by iosize. This object represents the class of completely unknown multivariable, time-varying nonlinear systems.

For practical purposes, these uncertain elements represent noncommuting symbolic variables (placeholders). All algebraic operations, such as addition, subtraction, and multiplication (i.e., cascade) operate properly, and substitution (with usubs) is allowed.

The analysis tools (e.g., robuststab) do not currently handle these types of uncertain elements. Therefore, these elements do not provide a significant amount of usability, and their role in the toolbox is small.

\section*{Examples}

You can create a 2-by-3 udyn element and check its size and properties.
```

N = udyn('N',[2 3])
Uncertain Dynamic System: Name N, size 2x3
size(N)
ans =
2 3
get(N)
Name: 'N'
NominalValue: [2x3 double]
AutoSimplify: 'basic'

```

\section*{See Also}
ureal | ultidyn | ucomplex | ucomplexm

\section*{ufind}

Find uncertain variables in Simulink model

\section*{Syntax}
```

uvars = ufind('mdl')
[uvars,pathinfo] = ufind('mdl')
uvars = ufind(usys_1,usys_2,...)

```

\section*{Description}
uvars = ufind ('mdl') finds Uncertain State Space blocks in the Simulink model mdl. It returns a structure uvars that contains all uncertain variables associated with the Uncertain State Space blocks. Each uncertain variable is a ureal or ultidyn object and is listed by name in uvars.
[uvars, pathinfo] = ufind('mdl') returns a cell array pathinfothat contains paths to the Uncertain State Space blocks and the corresponding uncertain variables in the block. The first column of pathinfo lists the block paths through the model hierarchy and the second column lists the uncertain variables associated with the block. Use pathinfo to verify that all Uncertain State Space blocks in the model mdl have been identified.
uvars = ufind(usys_1,usys_2,...) collects all uncertain variables referenced by the uncertain model usys_n. usys_n can be uss or ufrd models. Use this syntax as an alternative to querying the model itself, when you know the uncertain models that the Uncertain State Space blocks use.
ufind can find Uncertain State Space blocks inside Masked Subsystems, Library Links, and Model References but not inside Accelerated Model References. ufind errors out if the same uncertain variable name has different definitions in the model. For example, if your model contains two Uncertain State Space blocks where the uncertain system variables define the same uncertain variable 'unc_par" as ultidyn('unc_par', [1 1]) and ureal ('unc_par',5), such an error occurs.

\section*{Examples}

Find all Uncertain State Space blocks and uncertain variables in a Simulink model:
1 Open the Simulink model.
```

open_system('usim_model')

```

The model, as shown in the following figure, contains three Uncertain State Space blocks named Unmodeled Plant Dynamics, Plant, and Sensor Gain. These blocks depend on three uncertain variables named input_unc, unc_pole and sensor_gain.


2 Use ufind to find all Uncertain State Space blocks and uncertain variables in the model.
[uvars, pathinfo] = ufind('usim_model')
3 Type uvars to view the structure uvars. MATLAB returns the following result:
uvars =
```

 input_unc: [1x1 ultidyn]
 sensor_gain: [1x1 ureal]
 unc_pole: [1x1 ureal]
    ```

Each uncertain variable is a ureal or ultidyn object and is listed by name in uvars.

4 View the Uncertain State Space block paths and uncertain variables.
a Type pathinfo(:, 1 ) to view paths of the Uncertain State Space blocks in the model. MATLAB returns the following result:
```

ans =
'usim_model/Plant'
'usim_model/Sensor Gain'
'usim_model/Unmodeled Plant Dynamics'

```
b Type pathinfo(: , 2) to view the uncertain variables referenced by each Uncertain State Space block. MATLAB returns the following results:
ans \(=\)
'unc_pole'
'sensor_gain'
'input_unc'

\section*{Tutorials}
"Vary Uncertainty Values Using Individual Uncertain State Space Blocks"
"Vary Uncertainty Values Across Multiple Uncertain State Space Blocks"
Robustness Analysis in Simulink

\section*{How To}
"Simulate Uncertainty Effects"

\author{
See Also \\ usample | Uncertain State Space
}

\section*{ufrd}

Uncertain frequency response data model

\section*{Syntax}
```

ufrd_sys = ufrd(M,freqs)
ufrd_sys = ufrd(M,freqs,frequnits)
ufrd_sys = ufrd(M,freqs,frequnits,timeunits)

```

\section*{Description}

Uncertain frequency response data models (ufrd) arise when combining numeric frd models with uncertain models such as ureal, ultidyn, or uss. A ufrd model keeps track of how the uncertain elements affect the frequency response. Use ufrd for robust stability and worst-case performance analysis.

There are three ways to construct a ufrd model:
1 Combine numeric frd models with uncertain models using model arithmetic. For example:
```

sys = frd(rand(100,1),logspace(-2,2,100));
k = ureal('k',1);
D = ultidyn('Delta',[1 1]);
ufrd_sys = k*sys*(1+0.1*D)

```
ufrd_sys is a ufrd model with uncertain elements \(k\) and \(D\).
2 ufrd_sys = ufrd(M,freqs) converts the dynamic system model or static model M to ufrd. If \(M\) contains Control Design Blocks that do not represent uncertainty, these blocks are replaced by their current value. (To preserve both tunable and uncertain Control Design Blocks, use genfrd instead.)

Use ufrd_sys = ufrd(M,freqs,frequnits) to specify the frequency units of the frequencies in freqs with the string frequnits. Use ufrd_sys = ufrd( \(M\), freqs, frequnits, timeunits) to specify the time unit of ufrd_sys when \(M\) is a static model.

3 Use frd to construct a ufrd model from an uncertain matrix (umat) representing uncertain frequency response data. For example:
```

a = ureal('delta',1,'percent',50);
freq = logspace(-2,2,100);
RespData = rand(1,1,100) * a;
usys = frd(RespData,freq,0.1)

```

\section*{Examples}

Compute the uncertain frequency response of an uncertain system (uss model) with both parametric uncertainty (ureal) and unmodeled dynamics uncertainty (ultidyn).
```

p1 = ureal('p1',5,'Range',[2 6]);
p2 = ureal('p2',3,'Plusminus',0.4);
p3 = ultidyn('p3',[1 1]);
Wt = makeweight(.15,30,10);
A = [-p1 0;p2 -p1];
B = [0;p2];
C = [1 1];
usys = uss(A,B,C,0)*(1+Wt*p3);
usysfrd = ufrd(usys,logspace(-2,2,60));

```

Plot 20 random samples and the nominal value of the uncertain frequency response.
bode(usysfrd,'r',usysfrd.NominalValue,'b+')

\section*{More About}
- "Control Design Blocks"

\author{
See Also \\ frd | ss | uss | genfrd
}

\section*{ulinearize}

Linearize Simulink model with Uncertain State Space block

\section*{Syntax}
```

ulin = ulinearize('sys',io)
ulin = ulinearize('sys',op,io)
ulin = ulinearize('sys',op,io,options)
ulin = ulinearize('sys',op)
ulin_block = ulinearize('sys',op,'blockname')
[ulin,op] = ulinearize('sys',snapshottimes,...);
ulin = ulinearize('sys','StateOrder',stateorder)

```

\section*{Description}
ulin = ulinearize('sys',io) linearizes the Simulink model sys that contains Uncertain State Space blocks and returns a linear time-invariant uncertain system ulin. ulin is an uss object. io is an I/O object that specifies linearization I/O points in the model. Use getlinio or linio to create io. The linearization occurs at the operating point specified in the model.
ulin=ulinearize('sys', io,op) linearizes the model at the operating point specified in the operating point object op. Use operpoint or findop to create op. Both op and io are associated with the same model sys.
ulin=ulinearize('sys',io, op,options) takes a linearization options object options that contains several options for linearization and returns linear time-invariant uncertain system ulin. Use linearizeOptions to create options.
ulin=ulinearize('sys',op) linearizes the model sys at the operating point specified in the operating point object op. The software uses root-level inport and outport blocks in sys as I/O points for linearization.
ulin_block=ulinearize('sys', op, 'blockname', ...) takes the name of a block blockname in the model sys and returns a linear time-invariant uncertain system ulin_block. You can also specify a fourth argument options to provide options for the linearization.
[ulin,op] = ulinearize('sys',snapshottimes,...) creates operating points for linearization by simulating the model and taking snapshots of the system's states and inputs at times specified in the vector snapshottimes. ulin is a set of linear time-invariant uncertain systems and op is the set of operating point objects used in linearization. You can also specify I/O object for linearization, or a block name. If you do not specify an I/O object or block name, the linearization uses root-level inport and outport blocks in the model. You can also supply an additional argument, options, to provide options for linearization.
ulin = ulinearize('sys', 'StateOrder', stateorder) creates a linear-timeinvariant uncertain system ulin, whose states are in a specified order. Specify the state order in the cell array stateorder by entering the names of the blocks containing states in the model. For all blocks, you can enter block names as the full block path. For continuous blocks, you can alternatively enter block names as the user-defined unique state name.

\section*{Examples}

Compute uncertain linearization of a Simulink model containing Uncertain State Space blocks:
```

% Define uncertain variables and uncertain system variables
% to use in Uncertain State Space blocks.
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,0);
wt = makeweight (0.25,130,2.5);
input_unc = ultidyn('input_unc',[1 1]);
sensor_pole = ureal('sensor_pole',-20,'Range',[-30 -10]);
sensor = tf(1,[1/(-sensor_pole) 1]);
% Open Simulink model. The model contains three Uncertain State
% Space blocks named Unmodeled Plant Dynamics, Uncertain Plant and
% Uncertain Sensor, and linearization I/O points.
open_system('rct_ulinearize_uss')
% Obtain linearization I/O points.

```
```

mdl = 'rct_ulinearize_uss';
io = getlinio(mdl);
% Compute the uncertain linearization of the model.
ulin = ulinearize(mdl,io)
% MATLAB returns an uss object with 5 states.

```

\section*{Tutorials}

\author{
"Linearize Block to Uncertain Model" \\ Linearization of Simulink Models with Uncertainty
}

\section*{How To}
"Obtain Uncertain State-Space Model from Simulink Model"

\author{
See Also \\ ureal | udyn | ultidyn | uss
}

\section*{ultidyn}

Create uncertain linear time-invariant object

\section*{Syntax}
```

H = ultidyn('Name',iosize)
H = ultidyn('Name',iosize,'Property1',Value1,'Property2',Value2,...)

```

\section*{Description}

H = ultidyn('Name', iosize) creates an uncertain linear, time-invariant objects are used to represent unknown dynamic objects whose only known attributes are bounds on their frequency response. Uncertain linear, time-invariant objects have a name (the Name property), and an input/output size (ioSize property).

Trailing Property/Value pairs are allowed in the construction.
H = ultidyn('name', iosize,'Property1', Value1,'Property2', Value2,...)
The property Type is 'GainBounded ' (default) or 'PositiveReal', and describes in what form the knowledge about the object's frequency response is specified.
- If Type is 'GainBounded ', then the knowledge is an upper bound on the magnitude (i.e., absolute value), namely \(\operatorname{abs}(H)<=\) Bound at all frequencies. The matrix generalization of this is \(\|H\|<=\) Bound.
- If Type is 'PositiveReal' then the knowledge is a lower bound on the real part, namely Real (H) >= Bound at all frequencies. The matrix generalization of this is H \(+\mathrm{H}^{\prime}>=2 *\) Bound

The property Bound is a real, scalar that quantifies the bound on the frequency response of the uncertain object as described above.

The property SampleStateDimension is a positive integer, defining the state dimension of random samples of the uncertain object when sampled with usample. The default value is 1 .

The property AutoSimplify controls how expressions involving the uncertain matrix are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off', no simplification performed, and 'full' which applies model-reduction-like techniques to the uncertain object.

Use the property SampleMaxFrequency to limit the natural frequency for sampling. Randomly sampled uncertain dynamics are no faster than the specified value. The default value is Inf (no limit).

To model frequency-dependent uncertainty levels, multiply the ultidyn object by a suitable shaping filter. For example, for a ultidyn object dH , the following commands specify an uncertainty bound that increases from 0.1 at low frequencies to 10 at high frequencies.
```

W = tf([1 .1],[.1 1]);
dH = W*dH;

```

\section*{Examples}

\section*{MIMO Uncertain Dynamics}

Create an ultidyn object with internal name 'H', dimensions 2-by-3, norm bounded by 7 .

H = ultidyn('H',[2 3],'Bound', 7)
Uncertain GainBounded LTI Dynamics: Name H, 2x3, Gain Bound = 7

\section*{Nyquist Plot of Uncertain Dynamics}

Create a scalar ultidyn object with an internal name 'B', whose frequency response has a real part greater than 2.5.
```

B = ultidyn('B',[1 1],'Type','PositiveReal','Bound',2.5)

```
\(B=\)
Uncertain LTI dynamics "B" with 1 outputs, 1 inputs, and positive real bound of 2.5.

Change the SampleStateDimension to 5, and plot the Nyquist plot of 30 random samples.
B.SampleStateDimension = 5; nyquist(usample ( \(B, 30\) ))


\author{
See Also \\ get | ureal | uss
}

\section*{umat}

Create uncertain matrix

\section*{Syntax}
\(M=\operatorname{umat}(A)\)

\section*{Description}

Uncertain matrices are rational expressions involving uncertain elements of type ureal, ucomplex, or ucomplexm. Use uncertain matrices for worst-case gain analysis and for building uncertain state-space (uss) models.

Create uncertain matrices by creating uncertain elements and combining them using arithmetic and matrix operations. For example:
```

p = ureal('p',1);
M = [0 p; 1 p^2]

```
creates a 2 -by- 2 uncertain matrix (a umat object) with the uncertain parameter p .
The syntax \(M=\) umat ( \(A\) ) converts the double array \(A\) to a umat object with no uncertainty.

Most standard matrix manipulations are valid on uncertain matrices, including addition, multiplication, inverse, horizontal and vertical concatenation. Specific rows/columns of an uncertain matrix can be referenced and assigned also.

If \(M\) is a umat, then \(M\). NominalValue is the result obtained by replacing each uncertain element in \(M\) with its own nominal value.

If \(M\) is a umat, then \(M\). Uncertainty is an object describing all the uncertain elements in M. All element can be referenced and their properties modified with this Uncertainty gateway. For instance, if \(B\) is an uncertain real parameter in \(M\), then M.Uncertainty.B accesses the uncertain element \(B\) in \(M\).

\section*{Examples}

Create 3 uncertain elements and then a 3-by-2 umat.
```

a = ureal('a',5,'Range',[2 6]);
b = ucomplex('b',1+j,'Radius',0.5);
c = ureal('c',3,'Plusminus',0.4);
M = [a b;b*a 7;c-a b^2]

```
\(M\) is an uncertain matrix (umat object) with the uncertain parameters \(a, b\), and \(c\).
View the properties of \(M\) with get
get (M)
The nominal value of \(M\) is the result when all atoms are replaced by their nominal values.
```

M.NominalValue
ans =
5.0000 1.0000 + 1.0000i
5.0000 + 5.0000i 7.0000
-2.0000 0 + 2.0000i

```

Change the nominal value of a within \(M\) to 4 . The nominal value of \(M\) reflects this change.
```

M.Uncertainty.a.NominalValue = 4;
M.NominalValue
ans =
4.0000 1.0000 + 1.0000i
4.0000 + 4.0000i 7.0000
-1.0000 0 + 2.0000i

```

Get a random sample of \(M\), obtained by taking random samples of the uncertain atoms within M.
```

usample(M)
ans =
l.0072 + 2.7808i 0.8647 + 1.0000 + 3854i

```

Select the 1 st and 3 rd rows, and the 2 nd column of \(M\). The result is a 2 -by- 1 umat, whose dependence is only on \(b\).
```

M([1 3],2)

```

\section*{See Also ureal | ultidyn | usample | ucomplex | ucomplexm}

\section*{uplot}

Plot multiple frequency response objects and doubles on same graph

\section*{Syntax}
```

uplot(G1)
uplot(G1,G2)
uplot(G1,Xdata,Ydata)
uplot(G1,Xdata,Ydata,...)
uplot(G1,linetype)
uplot(G1,linetype,G2,...)
uplot(G1, linetype, Xdata, Ydata,linetype)
uplot(type,G1,linetype,Xdata,Ydata,linetype)
H = uplot(G1)
H = uplot(G1,G2)
H = uplot(G1,Xdata,Ydata)
H = uplot(G1,Xdata,Ydata, ...)
H = uplot(G1,linetype)
H = uplot(G1,linetype,G2,...)
H = uplot(G1,linetype,Xdata,Ydata,linetype)

```

\section*{Description}
uplot plots double and frd objects. The syntax is the same as the MATLAB plot command except that all data is contained in frd objects, and the axes are specified by type.

The (optional) type argument must be one of
\begin{tabular}{|l|l|}
\hline Type & Description \\
\hline 'iv, \(\mathrm{d}^{\prime}\) & Data versus independent variable (default) \\
\hline 'iv, m' & Magnitude versus independent variable \\
\hline 'iv, lm' & log(magnitude) versus independent variable \\
\hline 'iv, p' & Phase versus independent variable \\
\hline 'liv, m' & Magnitude versus log(independent variable) \\
\hline 'liv, \(\mathrm{d}^{\prime}\) & Data versus log(independent variable) \\
\hline 'liv, m' & Magnitude versus log(independent variable) \\
\hline 'liv, lm' & log(magnitude) versus log(independent variable) \\
\hline 'liv, p' & Phase versus log(independent variable) \\
\hline 'r,i' & Real versus imaginary (parametrize by independent variable) \\
\hline 'nyq' & Real versus imaginary (parametrize by independent variable) \\
\hline 'nic' & Nicholas plot \\
\hline 'bode ' & Bode magnitude and phase plot \\
\hline
\end{tabular}

The remaining arguments of uplot take the same form as the MATLAB plot command. Line types (for example, ' \({ }^{\prime}\) ', 'g-.', or '*r') can be optionally specified after any frequency response argument.

There is a subtle distinction between constants and frd objects with only one independent variable. A constant is treated as such across all frequencies, and consequently shows up as a line on any graph with the independent variable as an axis. A frd object with only one frequency point always shows up as a point. You might need to specify one of the more obvious point types in order to see it (e.g., ' + ', ' \(x\) ', etc.).

\section*{Examples}

\section*{Plot Multiple Frequency Responses}

Create two SISO second-order systems, and calculate their frequency responses over different frequency ranges.
```

a1 = [-1,1;-1, -0.5];
b1 = [0;2]; c1 = [1,0]; d1 = 0;
sys1 = ss(a1,b1,c1,d1);
a2 = [-.1,1;-1, -0.05];
b2 = [1;1]; c2 = [-0.5,0]; d2 = 0.1;
sys2 = ss(a2,b2,c2,d2);
omega = logspace(-2,2,100);
sys1g = frd(sys1,omega);
omega2 = [[0.05:0.1:1.5] [1.6:.5:20] [0.9:0.01:1.1]];
omega2 = sort(omega2);
sys2g = frd(sys2,omega2);

```

Create an frd object with a single frequency.
```

sys3 = rss(1,1,1);
rspot = frd(sys3,2);

```

The following plot uses the plot_type specification 'liv, lm'.
```

uplot('liv,lm',sys1g,'b-.',rspot,'r*-',sys2g);
xlabel('log independent variable')
ylabel('log magnitude')
title('axis specification: liv,lm')

```


\author{
See Also \\ bode | plot | nichols | nyquist | semilogx | semilogy | sigma
}

\section*{ureal}

Create uncertain real parameter

\section*{Syntax}
```

p = ureal('name',nominalvalue)
p = ureal('name',nominalvalue,'Property1',Value1,...
'Property2',Value2,...)

```

\section*{Description}

An uncertain real parameter is used to represent a real number whose value is uncertain. Uncertain real parameters have a name (the Name property), and a nominal value (NominalValue property).

The uncertainty (potential deviation from NominalValue) is described (equivalently) in 3 different properties:
- PlusMinus: the additive deviation from NominalValue
- Range: the interval containing NominalValue
- Percentage: the percentage deviation from NominalValue

The Mode property specifies which one of these three descriptions remains unchanged if the NominalValue is changed (the other two descriptions are derived). The possible values for the Mode property are 'Range', 'Percentage' and 'PlusMinus'.

The default Mode is 'PlusMinus', and [-11] is the default value for the 'PlusMinus' property. The range of uncertainty need not be symmetric about NominalValue.

The property AutoSimplify controls how expressions involving the uncertain matrix are simplified. Its default value is 'basic', which means elementary methods of simplification are applied as operations are completed. Other values for AutoSimplify are 'off'', no simplification performed, and 'full', which applies model-reductionlike techniques to the uncertain object.

\section*{Examples}

\section*{Example 1}

Create an uncertain real parameter and use get to display the properties and their values. Create uncertain real parameter object a with the internal name 'a' and nominal value 5 .
```

a = ureal('a',5)
Uncertain Real Parameter: Name a, NominalValue 5, variability = [-1 1]
get(a)
Name: 'a'
NominalValue: 5
Mode: 'PlusMinus'
Range: [4 6]
PlusMinus: [-1 1]
Percentage: [-20 20]
AutoSimplify: 'basic'

```

Note that the Mode is 'PlusMinus', and that the value of PlusMinus is indeed [-1 1]. As expected, the range description of uncertainty is [4 6], while the percentage description of uncertainty is [ -20 20].

Set the range to [39]. This leaves Mode and NominalValue unchanged, but all three descriptions of uncertainty have been modified.
```

a.Range = [3 9];
get(a)
Name: 'a'
NominalValue: 5
Mode: 'PlusMinus'
Range: [3 9]
PlusMinus: [-2 4]
Percentage: [-40 80]
AutoSimplify: 'basic'

```

\section*{Example 2}

Property/Value pairs can also be specified at creation.
```

b = ureal('b',6,'Percentage',[-30 40],'AutoSimplify','full');
get(b)
Name: 'b'
NominalValue: 6

```
```

Mode: 'Percentage'
Range: [4.2000 8.4000]
PlusMinus: [-1.8000 2.4000]
Percentage: [-30.0000 40.0000]
AutoSimplify: 'full'

```

Note that Mode is automatically set to 'Percentage'.

\section*{Example 3}

Specify the uncertainty in terms of percentage, but force Mode to 'Range '.
```

c = ureal('c',4,'Mode','Range','Percentage',25);
get(c)
Name: 'c'
NominalValue: 4
Mode: 'Range'
Range: [3 5]
PlusMinus: [-1 1]
Percentage: [-25 25]
AutoSimplify: 'basic'

```

\section*{See Also}
ucomplex | umat | uss

\section*{uss/usample}

Generate random samples of uncertain or generalized model

\section*{Syntax}
```

B = usample(A);
B = usample(A,N)
[B,SampleValues] = usample(A,N)
[B,SampleValues] = usample(A,Names,N)
[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...)
[B,SampleValues] = usample(A,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)

```

\section*{Description}
\(B=\) usample(A) substitutes a random sample of the uncertain objects in \(A\), returning a certain (i.e., not uncertain) array of size [size(A)]. The input A can be any uncertain element, matrix, or system, such as ureal, umat, uss, or ufrd. A can also be any generalized matrix or system, such as genss or genmat, that contains uncertain blocks and other types of Control Design Blocks. If A contains non-uncertain control design blocks, these are unchanged in B. Thus, for example, usample applied to a genss with both tunable and uncertain blocks, the result is a genss array with only tunable blocks.
\(B=\) usample \((A, N)\) substitutes \(N\) random samples of the uncertain objects in \(A\), returning a certain (i.e., not uncertain) array of size [size(A) N].
[B,SampleValues] = usample( \(A, N\) ) additionally returns the specific sampled values (as a Struct whose field names are the names of A's uncertain elements) of the uncertain elements. Hence, B is the same as usubs (A, SampleValues).
[B,SampleValues] = usample(A,Names, N) samples only the uncertain elements listed in the Names variable (cell, or char array). If Names does not
include all the uncertain objects in \(A\), then \(B\) will be an uncertain object. Any entries of Names that are not elements of \(A\) are simply ignored. Note that usample (A,fieldnames(A.Uncertainty), \(N\) ) is the same as usample (A,N).
[B,SampleValues] = usample(A,Names1,N1,Names2,N2,...) takes N1 samples of the uncertain elements listed in Names1, and N2 samples of the uncertain elements listed in Names2, and so on. size (B) will equal [size(A) N1 N2 ...].

The scalar parameter Wmax in
```

[B,SampleValues] = usample(A,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)
[B,SampleValues] = usample(A,Names,N,Wmax)

```
affects how ultidyn elements within A are sampled, restricting the poles of the samples. If \(A\) is a continuous-time uss or ufrd, then the poles of sampled GainBounded ultidyn elements in SampleValues will each have magnitude \(<=B W\). If \(A\) is a discrete-time, then sampled GainBounded ultidyn elements are obtained by Tustin transformation, using BW / (2*TS) as the (continuous) pole magnitude bound. In this case, BW should be < 1. If the ultidyn type is PositiveReal, then the samples are obtained by bilinearly transforming (see "Normalizing Functions for Uncertain Elements") the GainBounded elements described above.

\section*{Examples}

\section*{Sample Real Parameter}

Create a real uncertain parameter, sample it, and plot a histogram of the sampled values.
```

A = ureal('A',5);
Asample = usample(A,500);

```

Examine the size of the parameter and the sample array.
```

size(A)

```
Uncertain real scalar.
size(Asample)
```

ans =
1 1 500

```

A is a scalar parameter. The dimensions of Asample reflect that A is a 1-by-1 parameter. Examine the data type of Asample.
class(Asample)
ans =
double

The samples of the scalar parameter are numerical values.
Plot the histogram of sampled values.
hist(Asample(:))


\section*{Sample Responses of Uncertain Control System Model}

This example illustrates how to sample the open and closed-loop response of an uncertain plant model for Monte Carlo analysis.

Create two uncertain real parameters and an uncertain plant.
```

gamma = ureal('gamma',4);
tau = ureal('tau',.5,'Percentage',30);
P = tf(gamma,[tau 1]);

```

Create an integral controller based on the nominal values of plant uncertainties.
KI = 1/(2*tau.Nominal*gamma.Nominal);
\(C=\operatorname{tf}\left(K I,\left[\begin{array}{ll}1 & 0\end{array}\right]\right) ;\)

Now create an uncertain closed-loop system.
CLP \(=\) feedback \(\left(P^{*} C, 1\right)\);
Sample the plant at 20 values, distributed uniformly about the tau and gamma parameter cube.
[Psample1D, Values1D] = usample(P, 20); size (Psample1D)

20x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
This sampling returns an array of 20 state-space models, each representing the closedloop system within the uncertainty.

Now sample the plant at 10 values of tau and 15 values of gamma.
[Psample2D, Values2D] = usample(P,'tau', 10, 'gamma', 15); size (Psample2D)
\(10 \times 15\) array of state-space models.
Each model has 1 outputs, 1 inputs, and 1 states.
Plot the step responses of the \(1-\mathrm{D}\) sampled plant.
```

subplot(2,1,1);

```
step(Psample1D)

Step Response


Evaluate the uncertain closed-loop model at the same values using usubs, and plot the step response.
subplot (2,1,2);
step(usubs(CLP,Values1D))


\section*{Restrict Pole Locations in Sampled Uncertain Dynamics}

To see the effect of limiting the bandwidth of sampled models with Wmax, create two ultidyn objects.

A = ultidyn('A',[11]);
B = ultidyn('B',[11]);
Sample 10 instances of each, using a bandwidth limit of \(1 \mathrm{rad} / \mathrm{sec}\) on A , and \(20 \mathrm{rad} / \mathrm{sec}\) on B.

Npts = 10;
As = usample(A,Npts,1);
Bs = usample(B,Npts,20);

Plot 10 -second step responses, for the two sample sets.
step(As,'r',Bs,'b--',10)


The lower bandwith limit on the samples of A results in generally slower step responses for those samples.

\section*{See Also}
usample | usubs | ufind | ureal | rsampleBlock | ucomplex | ultidyn | umat | ufrd | uss

\section*{usample}

Generate random samples of uncertain variables in a Simulink model
This function is for generating random samples of uncertain variables stored in a data structure you obtain from a Simulink model, using ufind. To generate random samples from uncertain models or generalized state-space models, use usample.

\section*{Syntax}
```

samples = usample(uvars,N)
samples = usample(uvars)
samples = usample(uvars,N,Wmax)

```

\section*{Description}
samples = usample(uvars, \(N\) ) generates \(N\) random samples of the uncertain variables in uvars. uvars is a structure that lists uncertain variables (ureal, ucomplex or ultidyn) by name. You can automatically obtain uvars for a Simulink model that contains Uncertain State Space blocks using ufind. samples is an \(N\)-by- 1 structure array whose field names and values are the names and sample values of the uncertain variables. Use this syntax, together with ufind, to generate random samples for uncertain variables in Simulink models.
samples = usample(uvars) is equivalent to usample(uvars,1).
samples = usample(uvars,N,Wmax) specifies constraints, as described in uss/ usample, for sampling uncertain variables of type ultidyn in uvars.

\section*{Examples}

\section*{Generate random samples of uncertain variables}
\% Create a structure that contains uncertain variables a and \% b.
```

uvars = struct('a',ureal('a',5),'b',ultidyn('b',[2 3],'Bound',7))
% Use usample to generate random values of a and b.
samples = usample(uvars)

```

\section*{Sample Uncertain Variables in a Simulink® Model}

Generate random samples of uncertain variables in a Simulink \({ }^{\circledR}\) model.
Open the model.
```

open_system('usim_model')

```


This model uses Uncertain State Space (USS) blodk to capture three sources of uncertainty: unmodeled plant dynamics (input_unc), variability in the plant pole location (unc_pole), and poorly known value of the sensor gain (sensor_gain).

To see how this uncertainty affects the closed-loop response, double-clidk to randomly sample the uncertainty and re-simulate the model. See the companion demo for more information on robustness analysis in Simulink.

The model contains three Uncertain State Space blocks named Unmodeled Plant Dynamics, Plant, and Sensor Gain. These blocks depend on three uncertain variables named input_unc, unc_pole, and sensor_gain.

Use ufind to find all Uncertain State Space blocks and uncertain variables in the model.
```

uvars = ufind('usim_model');

```


Use usample to generate random samples of input_unc, unc_pole, and sensor_gain. Simulate the closed-loop response for each of these random samples.
```

for i=1:10;
uval = usample(uvars);
sim('usim_model',10);
end

```


The MultiPlot Graph block displays the simulated responses.

\section*{Tutorials}
"Vary Uncertainty Values Using Individual Uncertain State Space Blocks"
"Vary Uncertainty Values Across Multiple Uncertain State Space Blocks"
Robustness Analysis in Simulink

\section*{How To}
"Simulate Uncertainty Effects"
```

See Also
ufind | usubs | ureal | ucomplex | umat | ufrd | uss | ultidyn

```

\section*{usimfill}

Helper function for USS System blocks to set "User-defined Uncertainty" field or state of "Uncertainty value" menu

Note usimfill will be removed in a future release. Use ufind instead.

\section*{Syntax}
usimfill(ModelName,str)
usimfill(ModelName,'Uncertainty value','Nominal')
usimfill(ModelName,'Uncertainty value','User defined')

\section*{Description}

The command usimfill allows simple control of some parameters of all USS System blocks in a Simulink model.
usimfill(ModelName, str) pushes the string in str into the Uncertainty value name field of all USS System blocks in the Simulink model specified by ModelName.
usimfill(ModelName,'Uncertainty value','Nominal') sets the Uncertainty value pulldown menu to Nominal for all USS System blocks in the Simulink model specified by ModelName. Only a limited number of characters are needed to make this specification, so usimfill(ModelName, 'U', 'N') accomplishes the same effect.
usimfill(ModelName,'Uncertainty value','User defined') sets the Uncertainty value pulldown menu to User defined for all USS System blocks in the Simulink model specified by ModelName. Only a limited number of characters are needed to make this specification, so usimfill(ModelName, 'U', 'U') accomplishes the same effect.

\section*{Examples}

See Robustness Analysis in Simulink for a more detailed example of how to use usimfill.

Open the model file associated with the example.
```

open_system('usim_model');
unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,1);
input_unc = ultidyn('input_unc',[11 1]);
wt = makeweight(0.25,130,2.5);
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]);

```

This has three USS System blocks. They are plant with a ureal atom named unc_pole; input_unc which is a ultidyn object, and sensor_gain which is a ureal atom.

Run usimfill on the model, filling in the field with the string 'newData'.
```

usimfill('usim_model','newData');

```

View all of the dialog boxes, and see that the string 'newData' has been entered.
Run usimfill on the model, changing the Uncertainty Selection to Nominal.
```

usimfill('usim_model','Uncertainty value','Nominal');

```

Similarly run usimfill on the model, changing the Uncertainty Selection to User Specified Uncertainty.
```

usimfill('usim_model','Uncertainty value','User defined');

```

Now generate a random sample of the uncertain atoms, and run the simulation
```

newData = usimsamp('usim_model',120);
sim('usim_model');

```

\section*{See Also}
usample | usiminfo | usimsamp | usubs

\section*{usiminfo}

Find USS System blocks within specified Simulink model and check for consistency

Note usiminfo will be removed in a future release. Use ufind instead.

\section*{Syntax}
[cflags, allupaths, allunames, upaths, unames, csumchar]
= usiminfo(sname, silent)

\section*{Description}

The command usiminfo returns information regarding the locations of all USS System blocks within a Simulink model and determines if these conpatiblilty conditions are satisfied. It is possible to have uncertain objects of the same name through out a Simulink model. The helper functions usimsamp and usimfill assume that these are the same uncertainty. Hence uncertain objects of the same name should have the same object properties and Uncertainty value in the USS System pull-down menu. usiminfo provides information about the uncertainty in the Simulink diagram sname.

The following describes the input and outputs arguments of usiminfo:
\begin{tabular}{|l|l|}
\hline Input Arguments & Description \\
\hline sname & Simulink diagram name \\
\hline silent & \begin{tabular}{l} 
Display inconsistencies between uncertain atoms, when not empty. \\
Default is empty.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output Arguments & Description \\
\hline cflag & \begin{tabular}{l} 
Compatibility flag set to 1 if all uncertainties are consistent, \\
set to 0 if an uncertainty definition(s) is consistent and set to \\
-1 if common uncertainties in different blocks have different \\
Uncertainty value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Output Arguments & Description \\
\hline allupaths & Path names of USS System blocks in the model (cell). \\
\hline allunames & Uncertainties names in Simulink model (cell). \\
\hline upaths & Path names associated with each allunames entry (cell). \\
\hline unames & Uncertainty names associated with each allupaths entry (cell). \\
\hline csumchar & \begin{tabular}{l} 
Character array with description of uncertainties and their \\
associated block path names. Empty if there is a conflict with \\
unames.
\end{tabular} \\
\hline
\end{tabular}

\section*{See Also}
usample | usimfill | usimsamp | usubs

\section*{usimsamp}

Generate random instance of all uncertain atoms present in all USS System blocks of Simulink model

Note usimsamp will be removed in a future release. Use usample instead.

\section*{Syntax}
```

sample = usimsamp(ModelName)
sample = usimsamp(ModelName,BW)

```

\section*{Description}

The command usimsamp samples a Simulink model. Note that if the model contains any USS System blocks, then the model can be interpreted as an uncertain Simulink model. The sample generated by usimsamp is a scalar structure, with fieldnames corresponding to the uncertain atoms within all of the USS System blocks, and the values are specific random samples of the atoms.

For ultidyn atoms, the magnitude of the sampled poles can be limited using an optional second bandwidth argument, BW. See usample for more information on this parameter.

\section*{Examples}

See Robustness Analysis in Simulink for a more detailed example of how to use usimsamp.

Open the model file associated with the example.
open_system('usim_model');
This has 3 USS System blocks. They are plant with a ureal atom named unc_pole; input_unc which is a ultidyn object, and sensor_gain which is a ureal atom.

Run usimsamp on the model, yielding a structure as described above.
```

unc_pole = ureal('unc_pole',-5,'Range',[-10 -4]);
plant = ss(unc_pole,5,1,1);
input_unc = ultidyn('input_unc',[1 1]);
wt = makeweight(0.25,130,2.5);
sensor_gain = ureal('sensor_gain',1,'Range',[0.1 2]);
data = usimsamp('usim_model'')
data =
input unc: [1x1 ss]
sensor_gain: 0.9935
unc_pole: -4.1308

```

\section*{See Also}
usample | usimfill | usiminfo | usubs

\section*{USS}

Specify uncertain state-space models or convert LTI model to uncertain state-space model

\section*{Syntax}
```

usys = uss(A,B,C,D)
usys = uss(A,B,C,D,Ts)
usys = uss(D)
usys = uss(A, B, C, D, Property,Value,...)
usys = uss(A,B,C,D,Ts,Property,Value,...)
usys = uss(sys)

```

\section*{Description}
uss creates uncertain state-space models (uss objects) or to convert LTI models to the uss class.
usys \(=\) uss ( \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) ) creates a continuous-time uncertain state-space object. The matrices A, B, C, and D can be umat and/or double and/or uncertain atoms. These are the 4 matrices associated with the linear differential equation model to describe the system.
usys \(=\) uss ( \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{Ts}\) ) creates a discrete-time uncertain state-space object with sample time Ts.
usys \(=\) uss (D) specifies a static gain matrix and is equivalent to usys \(=\) uss([], [], [],D).

Any of these syntaxes can be followed by property name/property value pairs.
usys \(=\) uss (A, B, C, D,'P1', V1,'P2', V2,...) set the properties P1, P2, ... to the values V1, V2, ...
usys = uss(sys) converts an arbitrary ss, tf or zpk model sys to an uncertain state-space object without uncertainties. Both usys. NominalValue and simplify(usys, 'class') are the same as ss(sys).

\section*{Examples}

You can first create two uncertain atoms and use them to create two uncertain matrices. These four matrices can be packed together to form a 1 -output, 1 -input, 2 -state continuous-time uncertain state-space system.
```

p1 = ureal('p1',5,'Range',[2 6]);
p2 = ureal('p2',3,'Plusminus',0.4);
A = [-p1 0;p2 -p1];
B = [0;p2];
C = [11 1];
usys = uss(A,B,C,0);

```

In the second example, you can convert a not-uncertain tf model to an uncertain statespace model without uncertainties. You can verify the equality of the nominal value of the usys object and simplified representation to the original system.
```

G = tf([ll 2 3],[1 2 3 4]);
usys = uss(G)
USS: 3 States, 1 Output, 1 Input, Continuous System
isequal(usys.NominalValue,ss(G))
ans =
1
isequal(simplify(usys,'class'),ss(G))
ans =
1

```

\section*{See Also}
```

frd | ss

```

\section*{usubs}

Substitute given values for uncertain elements of uncertain objects

\section*{Syntax}
\(B=\) usubs (M,ElementName1, value1,ElementName2, value2, ...)
\(B=\) usubs \((M, S)\)
\(B=\) usubs (M,...,'-once')
B = usubs(M,...,'-batch')

\section*{Description}

Use usubs to substitute a specific value for an uncertain element of an uncertain model object. The value can itself be uncertain. It needs to be the correct size, but otherwise can be of any class, and can be an array. Hence, the result can be of any class. In this manner, uncertain elements act as symbolic placeholders, for which specific values (which can also contain other placeholders too) can be substituted.
\(B=\) usubs(M,ElementName1, value1,ElementName2, value2,...) sets the elements in M, identified by ElementName1, ElementName2, etc., to the values in value1, value2, etc. respectively.

Any value can also be the string 'NominalValue' or 'Random' (or only partially specified) in which case the nominal value, or a random instance of the atom is used.
\(B=\) usubs \((M, S)\) instantiates the uncertain elements of \(M\) to the values specified in the structure \(S\). The field names of \(S\) are the names of the uncertain elements to replace. The values are the corresponding replacement values. To provide several replacement values, make S a struct array, where each struct contains one set of replacement values. A structure such as \(S\) typically comes from robustness analysis commands such as robuststab, usample, or wcgain.
\(B=\) usubs ( \(M, \ldots\), ' - once') performs vectorized substitution in the uncertain model array M. Each uncertain element is replaced by a single value, but this value may change across the model array. To specify different substitute values for each model in the array M, use:
- A cell array for each valueN that causes the uncertain element ElementNameN in \(M(:,:, k)\) to be replaced by valueN \((k)\). For example, if \(M\) is a 2 -by- 3 array, then a 2 -by- 3 cell array value 1 replaces ElementName 1 of the model \(M(:,:, k)\) with the corresponding value1 (k).
- A struct array \(S\) that specifies one set of substitute values \(S(k)\) for each model M (: , : , k) .

Numeric array formats are also accepted for value1, value2, . . . For example, value1 can be a 2-by-3 array of LTI models, a numeric array of size [size (name1) 2 3], or a 2 -by- 3 matrix when the uncertain element name 1 is scalar-valued. The array sizes of M , S, value1, value2, ... must agree along non-singleton dimensions. Scalar expansion takes place along singleton dimensions.

Vectorized substitution (' - once' ) is the default for model arrays when no substitution method is specified.
\(B=\) usubs ( \(M, \ldots,{ }^{\prime}\) - batch') performs batch substitution in the uncertain model array M. Each uncertain element is replaced by an array of values, and the same values are used for all models in M. In batch substitution, B is a model array of size [ size (M) VS ], where VS is the size of the array of substitute values.

\section*{Examples}

\section*{Evaluate Uncertain Matrix for Multiple Values of Uncertain Parameters}

Evaluate an uncertain matrix at several different values of the uncertain parameters of the matrix.

Create an uncertain matrix with two uncertain parameters.
a \(=\) ureal('a',5);
b = ureal('b',-3);
M = [ab];
Evaluate the matrix at four different combinations of values for the uncertain parameters a and b.

B = usubs(M,'a',[1;2;3;4],'b',[10;11;12;13]);

This command evaluates \(M\) for the four different \((a, b)\) combinations \((1,10)\), \((2,11)\), and so on. Therefore, B is a 1-by-2-by-4 array of numeric values containing the four evaluated values of M .

\section*{Evaluate Uncertain Matrix over Grid of Uncertain Parameters}

Evaluate an uncertain matrix over a 3-by-4 grid of values of the uncertain parameters of the matrix.

Create a 2-by-2 uncertain matrix with two uncertain parameters.
```

a = ureal('a',5);
b = ureal('b',-3);
M = [a b;0 a*b];

```

Build arrays of values for the uncertain parameters.
```

aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);

```

This command builds two 4 -by- 3 grids of values.
Evaluate \(M\) over the parameter grids \(A\) and \(B\).
\(B=u s u b s\left(M,{ }^{\prime}{ }^{\prime}\right.\) ', \(\left.a s, ' b ', b s\right) ;\)
This command evaluates \(M\) for each four different combination of values \((A(k), B(k)) . B\) is a 2 -by- 2 -by- 4 -by- 3 array of numeric values, which is a 4 -by- 3 array of values of \(M\), i.e., \(M\) evaluated over the parameter grids.

\section*{Instantiate Uncertain Parameter by Batch Substitution of Parameter for Array of Values}

Evaluate an array of uncertain models, substituting an array of values for an uncertain parameter.

Create a 1-by-2 uncertain matrix with two uncertain parameters.
```

a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

```

Replace a by each of the values \(1,2,3\), and 4 .
```

Ma = usubs(M,'a',[1;2;3;4]);

```

This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one uncertain parameter \(b\).

For each model in the array Ma, evaluate b at 10, 20, and 30 .
\(B=\) usubs(Ma, 'b', [10;20;30],'-batch ');
The '-batch' flag causes usubs to evaluate each model in the array at all three values of \(b\). Thus \(B\) is a 4 -by- 3 array of \(M\) values.

The ' - batch ' syntax here yields the same result as the parameter grid approach used in the previous example:
```

aval = [1;2;3;4];
bval = [10;20;30];
[as,bs] = ndgrid(aval,bval);
B = usubs(M,'a',as,'b',bs);

```

\section*{Instantiate Uncertain Parameter Using Different Value for Each Entry in Array}

Evaluate an array of uncertain models, substituting a different value for the uncertain parameter in each entry in the array.

Create a 1-by-2 uncertain matrix with two uncertain parameters.
```

a = ureal('a',5);
b = ureal('b',-3);
M = [a b];

```

Replace a by each of the values \(1,2,3\), and 4 .
Ma \(=\) usubs(M,'a',[1;2;3;4]);
This command returns a 4-by-1 array of 1-by-2 uncertain matrices that contain one uncertain parameter \(b\).

For each model in the array Ma, evaluate \(b\). Use \(b=10\) for the first entry in the array, \(b\) \(=20\) for the second entry, and so on.

B = usubs(Ma, 'b',\{10;20;30;40\},'-once');

The ' - once ' flag causes usubs to evaluate the first model in the array using the first specified value for \(b\), the second model for the second specified value, etc.

\section*{Replace Uncertain Parameters with Values Returned by usample}

Replace the uncertain parameters in an uncertain models by values specified in struct array form, as returned by usample.

This is useful, for example, when you have multiple uncertain models that use the same set of parameters, and you want to evaluate all models at the same parameter values.

Create two uncertain matrices that have the same uncertain parameters, a and b.
```

a = ureal('a',5);
b = ureal('b',-3);
M1 = [a b];
M2 = [a b;0 a*b];

```

Generate some random samples of M1.
[M1rand, samples] = usample(M1,5);
M1rand is an array of five values of M1, evaluated at randomly generated values of a and b. These \(a\) and \(b\) values are returned in the struct array samples.

Examine the struct array samples.
samples
samples =
\(5 \times 1\) struct array with fields:
a
b

The field names of samples correspond to the uncertain parameters of M1. The values are the parameter values used to generate M1rand. Because M2 has the same parameters, you can use this structure to evaluate M2 at the same set of values.
```

M2rand = usubs(M2,samples);

```

\title{
This command returns a 1-by-5 array of instantiations of M2.
}

\section*{See Also}
gridureal | usample | simplify

\section*{wcgain}

Calculate bounds on worst-case gain of uncertain system

\section*{Syntax}
```

[wcg,wcu,info] = wcgain(sys)
[wcg,wcu,info] = wcgain(sys,opts)

```

\section*{Description}

The gain of an uncertain system generally depends on the values of its uncertain elements. Here "gain" refers to the frequency response magnitude. (For multi-input, multi-output systems, the "gain" refers to the maximum singular value of the frequency response matrix.) Determining the maximum gain over all allowable values of the uncertain elements is referred to as a worst-case gain analysis. This maximum gain is called the worst-case gain.

The following figure shows the frequency response magnitude of many samples of an uncertain system model.

wcgain can perform two types of analysis on uncertain systems.
- A max-over-frequency worst-case gain analysis yields the frequency-dependent curve of maximum gain, shown in the figure below.


This plot shows the maximum frequency-response magnitude at each frequency due to the uncertain elements within the model.
- A peak-over-frequency worst-case gain analysis only aims to compute the largest value of the frequency-response magnitude across all frequencies. During such an analysis, large frequency ranges can be quickly eliminated from consideration, thus reducing the computation time.


The default analysis performed by wcgain is max-over-frequency. You can control which analysis is performed by using the MaxOverFrequency option in the wcgainOptions options set.

Likewise, for arrays of uncertain models, the default wcgain analysis is max-over-array. This means that wcgain computes the worst-case gain over all models in the array. To compute the worst-case gain for each model separately, set the MaxOverArray option in the wcgainOptions options set to 'off'.

As with other uncertain-system analysis tools, only bounds on the worst-case gain are computed. The exact value of the worst-case gain is guaranteed to lie between these upper and lower bounds.

The computation used in wcgain is a frequency-domain calculation. If the input system sys is an uncertain frequency response object (ufrd), then the analysis is performed on the frequency grid within the ufrd. If the input system sys is an uncertain statespace object (uss), then an appropriate frequency grid is generated (automatically), and the analysis performed on that frequency grid. In all descriptions below, \(N\) denotes the number of points in the frequency grid.

\section*{Basic Syntax}

Suppose sys is an ufrd or uss with \(M\) uncertain elements. Calculate the worst-case gain of sys.
```

[wcg,wcu] = wcgain(sys)

```
wcg is a structure with the following fields
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline LowerBound & Lower bound on worst-case gain, positive scalar. \\
\hline UpperBound & \begin{tabular}{l} 
Upper bound on worst-case gain, positive scalar. If the \\
nominal value of the uncertain system is unstable, then \\
maxgain. LowerBound and maxgain.UpperBound equal \(\infty\).
\end{tabular} \\
\hline CriticalFrequency & \begin{tabular}{l} 
The critical value of frequency at which maximum gain \\
occurs (this is associated with maxgain. LowerBound).
\end{tabular} \\
\hline
\end{tabular}
wcu is a structure containing values of uncertain elements that yield the worst-case uncertainty. There are \(M\) field names, which are the names of uncertain elements of sys. The value of each field is the corresponding value of the uncertain element, such that when combined lead to the gain value in maxgain. LowerBound. The command
```

norm(usubs(sys,maxgainunc),'inf')

```
shows the gain.

\section*{Examples}

\section*{Worst-Case Performance of Closed-Loop Uncertain System}

To examine the worst-case performance of an uncertain control system, create a plant with nominal model of an integrator, and include additive unmodeled dynamics uncertainty of a level of 0.4 (this corresponds to \(100 \%\) model uncertainty at \(2.5 \mathrm{rad} / \mathrm{s}\) ). Then design a proportional controller K1 that puts the nominal closed-loop bandwidth at \(0.8 \mathrm{rad} / \mathrm{s}\). Roll off K1 at a frequency 25 times the nominal closed-loop bandwidth. Repeat the design for a controller K2 that puts the nominal closed-loop bandwidth at \(2.0 \mathrm{rad} / \mathrm{s}\). In each case, form the closed-loop sensitivity function.
```

P = tf(1,[1 0]) + ultidyn('delta',[1 1],'bound',0.4);
BW1 = 0.8;
K1 = tf(BW1,[1/(25*BW1) 1]);
S1 = feedback(1,P*K1);
BW2 = 2.0;
K2 = tf(BW2,[1/(25*BW2) 1]);
S2 = feedback(1,P*K2);

```

Assess the worst-case gain of the closed-loop sensitivity functions.
```

[maxgain1,wcunc1] = wcgain(S1);
[maxgain2,wcunc2] = wcgain(S2);

```
maxgain1, maxgain2
maxgain1 \(=\)
    LowerBound: 1.5069
    UpperBound: 1.5071
    CriticalFrequency: 5.0420
maxgain2 \(=\)
    LowerBound: 5.1032
    UpperBound: 5.1032
    CriticalFrequency: 10.8022

The maxgain variables indicate that controller K1 achieves better worst-case performance than K2. Plot Bode magnitude plots of the nominal closed-loop sensitivity functions, as well as the worst instances, using usubs to replace the uncertain element with the worst value returned by wcgain.
```

bodemag(S1.Nom,'r--',usubs(S1,wcunc1),'r',S2.Nom,'b--',...
usubs(S2,wcunc2),'b')
legend('Nominal S1','Worst Case S1','Nominal S2','Worst Case S2',...
'Location','SouthEast')

```

Bode Diagram


Although the nominal closed-loop sensitivity resulting from K2 is superior to that with K1, the worst-case behavior is much worse.

\section*{Basic Syntax with Third Output Argument}

A third output argument yields more specialized information, including sensitivities of the worst-case gain to the uncertain element's ranges and frequency-by-frequency information.
[wcg,wcu,info] = wcgain(sys)
The third output argument info is a structure with the following fields
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Sensitivity & \begin{tabular}{l} 
A struct with \(M\) fields. Field names are names of uncertain elements \\
of sys. Values of fields are positive numbers, each entry indicating the \\
local sensitivity of the worst-case gain in maxgain. LowerBound to all the \\
individual uncertain element's uncertainty ranges. For instance, a value of \\
25 indicates that if the uncertainty range is enlarged by 8\%, then the worst- \\
case gain should increase by about 2\%. If the Sensitivity property of the \\
wcgainOptions object is 'off', the values are NaN.
\end{tabular} \\
\hline Frequency & \(N\)-by-1 frequency vector associated with analysis. \\
\hline BadUncertainValue & Structure of worst-case uncertainty values. \\
\hline ArrayIndex & \begin{tabular}{l}
1 -by -1 scalar matrix whose value is 1. In more complicated situations \\
(described later) the value of this field is dependent on the input data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Specifying Additional Options}

Use wcgainOptions to specify additional options for the worst-case gain computation. For example, you can turn the sensitivity computation on or off, set the step-size in the sensitivity computation, adjust the stopping criteria, or control behavior across frequency and array dimensions. For instance, you can turn the sensitivity calculation off as follows:
```

opt = wcgainOptions('Sensitivity','off');
[maxgain,maxgainunc,info] = wcgain(sys,opt)

```

To compute the worst-case gain as a function of frequency, set the MaxOverFrequency option to 'off'.

For a model array sys, set the MaxOverFrequency option to 'off' to compute the worst-case gain for each individual model in the array.

See the wcgainOptions reference page for more information about available options for wcgain.

\section*{Behavior on Non-Uncertain Systems}
wcgain can also be used on not-uncertain systems (e.g., ss and frd). If sys is a single ss or frd, then the worst-case gain is simply the gain of the system (identical to norm(sys,'inf')). However, if sys has array dimensions, then the possible combinations of "peak-over" and "max-over" can be used to customize the computation.

\section*{Limitations}

Because the calculation is carried out with a frequency grid, it is possible (likely) that the true critical frequency is missing from the frequency vector used in the analysis. This is similar to the problem in robuststab. However, compared with robuststab, the problem in wcgain is less acute. Thought of as a function of problem data and frequency, the worst-case gain is a continuous function (unlike the robust stability margin, which in special cases is not; see Getting Reliable Estimates of Robustness Margins). Hence, in worst-case gain calculations, increasing the density of the frequency grid will always increase the accuracy of the answers and in the limit, answers arbitrarily close to the actual answers are obtainable with finite frequency grids.

\section*{Alternatives}

Use wcgainplot to plot the worst-case gain of an uncertain system.

\section*{More About}

\section*{Algorithms}

The worst-case gain is guaranteed to be at least as large as LowerBound (some value of allowable uncertain elements yield this gain - one instance is returned in the structure maxgainunc. The frequency at which the gain in LowerBound occurs is in CriticalFrequency. Lower bounds for wcgain are computed using a power iteration on ultidyn, ucomplex and ucomplexm uncertain atoms, (holding uncertain real parameters fixed) and a coordinate aligned search on the uncertain real parameters (while holding the complex blocks fixed).

Similarly, the worst-case gain is guaranteed to be no larger than UpperBound. In other words, for all allowable modeled uncertainty, the gain is provably less than or equal to UpperBound. These bounds are derived using the upper bound for the structured singular value, which is essentially optimally-scaled, small-gain theorem analysis. Upper bounds are obtained by solving a semidefinite program. wcgain uses branch and bound on the uncertain real parameters to tighten the lower and upper bounds.

\section*{See Also}
mussv | norm | robuststab | wcsens | wcgainOptions | wcmargin | wcgainplot | robustperf

\section*{wcgainOptions}

Option set for wcgain, wcgainplot, wcnorm, or wcsens

\section*{Syntax}
```

opt = wcgainOptions

```
opt = wcgainOptions(Name, Value,...)

\section*{Description}
opt = wcgainOptions returns the default option set for a wcgain calculation. The commands wcgainplot, wenorm, and wcsens also use wcgain to compute their results. Use a wcgainOptions options set to control options for those calculations.
opt = wcgainOptions(Name, Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, . . . , NameN, ValueN.

\section*{'Sensitivity'}

Determines whether to compute the sensitivity of worst-case gain with respect to each individual uncertain element.

Sensitivity is a string that takes the following values:
- 'on ' - wcgain computes the sensitivity of the worst-case gain with respect to each individual uncertain element. This provides an indication of which elements are most problematic.
- 'off' - wcgain does not compute the sensitivity of the worst-case gain with respect to each individual uncertain element.

Default: ' on '

\section*{'VaryUncertainty'}

Percentage variation of uncertainty for sensitivity calculations. The sensitivity estimate uses a finite difference calculation.

Default: 25

\section*{'LowerBoundOnly'}

Determines whether only the lower bound is computed.
LowerBoundOnly is a string that takes the following values:
- 'on ' - wcgain only computes a lower bound on the worst-case gain
- 'off' - wcgain computes lower and upper bounds on the worst-case gain

Default: 'off'

\section*{'MaxOverFrequency'}

MaxOverFrequency is a string that takes the following values:
- 'on' - wcgain computes the worst-case \(H_{\infty}\) norm (peak gain over frequency)
- 'off' - wcgain computes the worst-case gain at each frequency point

Default: ' on '

\section*{'Max0verArray'}

For uncertain model arrays, determines if worst-case gain is calculated over entire array or individually for all models in array.

MaxOverArray is a string that takes the following values:
- 'on ' - wcgain computes the worst-case gain over all models
- 'off' - wcgain computes the worst-case gain for each model individually

Default: ' on '

\section*{'AbsTol'}

Absolute tolerance on computed bound.
The algorithm terminates if UpperBound-LowerBound \(<=\max\) (AbsTol, Reltol*UpperBound).

Relaxing tolerance speeds up the computation.
Default: 0.02

\section*{'RelTol'}

Relative tolerance on computed bound.
The algorithm terminates if UpperBound-LowerBound \(<=\max\) (AbsTol, Reltol*UpperBound).

Default: 0.05

\section*{'AbsMax'}

Absolute threshold for lower bound.
The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.
Specify AbsMax and RelMax to terminate when the lower bound is large enough compared to the nominal gain.

\section*{Default: 5}

\section*{'RelMax'}

Relative threshold for lower bound.
The algorithm terminates if LowerBound >= AbsMax + RelMax * NominalGain.
Specify AbsMax and RelMax to terminate when the lower bound is large enough compared to the nominal gain.

Default: 20

\section*{'NSearch'}

Number of lower bound searches at each frequency

\section*{Default: 2}

\section*{Output Arguments opt}

Option set containing the specified options for wcgain.

\section*{Examples}

Create an options set for wcgain with only the lower bound being calculated and 5 lower bound searches at each frequency.
```

opt = wcgainOptions('LowerBoundOnly','on','Nsearch',5)

```

Alternatively, use dot notation to set the values of opt.
```

opt = wcgainOptions;
opt.LowerBound = 'on';
opt.NSearch = 5;

```

\section*{See Also}
wcgain | wcgainplot | wcnorm | wcsens

\section*{wcgainplot}

Graphical worst-case gain analysis

\section*{Syntax}
```

wcgainplot(sys)
wcgainplot(sys,w)
wcgainplot(sys,...,options)

```

\section*{Description}
wcgainplot (sys) plots the nominal and worst-case gains of the uncertain system sys as a function of frequency. For multi-input, multi-output (MIMO) systems, gain refers to the largest singular value of the frequency response matrix. (See sigma for more information about singular values.) The plot includes:
- Nominal - nominal gain of sys
- Worst - the response falling within the uncertainty of sys that has the highest peak gain
- Worst-case gain (lower bound) - the lowest worst-case gain at each frequency
- Worst-case gain (upper bound) - the highest gain within the uncertainty at each frequency
- Sampled Uncertainty - 20 responses randomly sampled from sys
wcgainplot (sys,w) focuses the plot on the frequencies specified by w.
- If \(w\) is a cell array \{wmin, wmax\}, wcgainplot plots the worst-case gains in the range \{wmin, wmax\}.
- If \(w\) is an array of frequencies, wcgainplot plots the worst-case gains at each frequency in the array.
wcgainplot (sys, ..., options) uses the options set options to specify additional options for the computation of the worst-case gains. Use wcgainOptions to create the options set.

\section*{Input Arguments}

\section*{sys}

Uncertain dynamic system.

\section*{w}

Frequencies of worst-case gain plots. Specify frequencies in radians/TimeUnit, where TimeUnit is the time unit of sys.
- If \(w\) is a cell array \(\{w m i n\), wmax \(\}\), wcgainplot plots the worst-case gains in the range \{wmin, wmax\}.
- If \(w\) is an array of frequencies, wcgainplot plots the worst-case gains at each frequency in the array.

\section*{options}

Options set specifying additional options for the computation of the worst-case gains. Use wcgainOptions to create the options set.

\section*{Examples}

\section*{Plot Worst-Case Gain of Uncertain System}

Plot the worst-case gain of the following system:
\[
s y s=\frac{s^{2}+3 s}{s^{2}+2 s+a}
\]

The uncertain parameter \(\mathrm{a}=2+/-1\). Plot the worst-case gain between 0.1 and 100 \(\mathrm{rad} / \mathrm{s}\).
```

a = ureal('a',2);
sys = tf([1 3 0],[1 2 a]);
wcgainplot(sys,{.1 100})

```

Singular Values


The Worst curve identifies the single response within the uncertainty that yields the highest gain at any frequency. The Worst-case gain (upper bound) curve is the envelope produced by finding the highest gain within the uncertainty at each frequency.

\section*{More About}

\section*{Algorithms}
wcgainplot uses wcgain to compute the worst-case gains. Use the options argument to wcgainplot to set options for the wcgain algorithm.
wcgainplot uses usample to compute the Sampled Uncertainty curves.

\section*{See Also \\ wcgain | usample | wcgainOptions | sigma}

\section*{wcgopt}

Options object for use with wcgain, wcsens, and wcmargin

Note: wcgopt will be removed in a future version. Use wcgainOptions or wcmarginOptions instead.

\section*{wcmargin}

Worst-case disk stability margins of uncertain feedback loops

\section*{Syntax}
```

wcmarg = wcmargin(L)
wcmargi = wcmargin(p,c)
[wcmargi,wcmargo] = wcmargin(p,c)
wcmargi = wcmargin(p,c,opt)
[wcmargi,wcmargo] = wcmargin(p,c,opt)

```

\section*{Description}

Classical gain and phase margins define the allowable loop-at-a-time variations in the nominal system gain and phase for which the feedback loop retains stability.

An alternative to classical gain and phase margins is the disk margin. The disk margin is the largest region for each channel such that for all gain and phase variations inside the region the nominal closed-loop system is stable. See the dmplot and loopmargin reference pages to learn more about the algorithm.

Consider a system with uncertain elements. It is of interest to determine the margin of each individual channel in the presence of uncertainty. These margins are called worstcase margins. Worst-case margin, wcmargin calculates the largest disk margin such that for values of the uncertainty and all gain and phase variations inside the disk, the closedloop system is stable. The worst-case gain and phase margin bounds are defined based on the balanced sensitivity function. Hence, results from the worst-case margin calculation imply that the closed-loop system is stable for a given uncertainty set and would remain stable in the presence of an additional gain and phase margin variation in the specified input/output channel.
wcmargL = wcmargin(L) calculates the combined worst-case input and output loop-at-a-time gain/phase margins of the feedback loop consisting of the loop transfer matrix \(L\) in
negative feedback with an identity matrix. L must be an uncertain system, uss or ufrd object. If \(L\) is a uss object, the frequency range and number of points used to calculate wcmargL are chosen automatically. Note that in this case, the worst-case margins at the input and output are equal because an identity matrix is used in feedback. wcmarg is a NU-by- 1 structure with the following fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline GainMargin & \begin{tabular}{l} 
Guaranteed bound on worst-case, single-loop gain margin at plant \\
inputs. Loop-at-a-time analysis.
\end{tabular} \\
\hline PhaseMargin & \begin{tabular}{l} 
Loop-at-a-time worst-case phase margin at plant inputs. Units are \\
degrees.
\end{tabular} \\
\hline Frequency & Frequency associated with the worst-case margin (rad/s). \\
\hline Sensitivity & \begin{tabular}{l} 
Struct with M fields. Field names are names of uncertain elements \\
of P and C. Values of fields are positive numbers, which each entry \\
indicating the local sensitivity of the worst-case margins to all the \\
individual uncertain element's uncertainty ranges. For instance, \\
a value of 50 indicates that if the uncertainty range is enlarged by \\
8\%, then the worst-case gain should increase by about 4\%. If the \\
Sensitivity property of the wcmarginOptions object is 'off ', \\
the values are NaN.
\end{tabular} \\
\hline
\end{tabular}
[wcmargi,wcmargo] = wcmargin( \(\mathrm{P}, \mathrm{C}\) ) calculates the combined worst-case input and output loop-at-a-time gain/phase margins of the feedback loop consisting of C in negative feedback with \(P\). C should only be the compensator in the feedback path, without reference channels, if it is a 2 -Dof architecture. That is, if the closed-loop system has a 2-Dof architecture the reference channel of the controller should be eliminated resulting in a 1-Dof architecture as shown in the following figure. Either P or C must be an uncertain system, uss or ufrd, or an uncertain matrix, umat. If P and C are ss/tf/ zpk or uss objects, the frequency range and number of points used to calculate wcmargi and wemargo are chosen automatically.


2-dof architecture


1-dof architecture

\section*{Basic Syntax}
[wcmargi,wcmargo] = wcmargin(L)
[wcmargi,wcmargo] = wcmargin( \(\mathrm{P}, \mathrm{C}\) )
wcmargi and wcmargo are structures corresponding to the loop-at-a-time worst-case, single-loop gain and phase margin of the channel. For the single-loop transfer matrix \(L\) of size \(N\)-by- \(N\), wcmargi is a \(N\)-by- 1 structure. For the case with two input arguments, the plant model P will have \(N_{Y}\) outputs and \(N_{U}\) inputs and hence the controller C must have \(N_{U}\) outputs and \(N_{Y}\) inputs. wcmargi is a NU-by- 1 structure with the following fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline GainMargin & \begin{tabular}{l} 
Guaranteed bound on worst-case, single-loop gain margin at plant \\
inputs. Loop-at-a-time analysis.
\end{tabular} \\
\hline PhaseMargin & \begin{tabular}{l} 
Loop-at-a-time worst-case phase margin at plant inputs. Units are \\
degrees.
\end{tabular} \\
\hline Frequency & Frequency associated with the worst-case margin (rad/s). \\
\hline Sensitivity & \begin{tabular}{l} 
Struct with \(M\) fields. Field names are names of uncertain elements \\
of \(P\) and \(C\). Values of fields are positive numbers, which each entry \\
indicating the local sensitivity of the worst-case margins to all the \\
individual uncertain element's uncertainty ranges. For instance, \\
a value of 50 indicates that if the uncertainty range is enlarged by \\
8\%, then the worst-case gain should increase by about 4\%. If the \\
Sensitivity property of the wcmarginOptions object is 'off ', \\
the values are NaN.
\end{tabular} \\
\hline
\end{tabular}
wcmargo is an \(N\)-by- 1 structure for the single loop transfer matrix input and wcmargo is an \(N_{Y}\)-by- 1 structure when the plant and controller are input. In both these cases, wcmargo has the same fields as wcmargi. The worst-case bound on the gain and phase margins are calculated based on a balanced sensitivity function.
[wcmargi,wcmargo] = wcmargin(L,opt) and
[wcmargi,wcmargo] = wcmargin(p,c,opt) specify options described in opt. (See wcmarginOptions for more details on the options for wcmargin.)

The sensitivity of the worst-case margin calculations to the individual uncertain elements is selected using the options object opt. To compute sensitivities, create a wcmarginOptions options object, and set the Sensitivity property to 'on'.

\section*{Examples}

\section*{MIMO Loop-at-a-Time Margins}

This example is designed to illustrate that loop-at-a-time margins (gain, phase, and/or distance to -1) can be inaccurate measures of multivariable robustness margins. Margins of the individual loops can be very sensitive to small perturbations within other loops.

The nominal closed-loop system considered here is shown as follows.

\(G\) and \(K\) are 2-by-2 multi-input/multi-output (MIMO) systems, defined as
\[
G:=\frac{1}{s^{2}+\alpha^{2}}\left[\begin{array}{cc}
s-\alpha^{2} & \alpha(s+1) \\
-\alpha(s+1) & s-\alpha^{2}
\end{array}\right], K=I_{2}
\]

Set \(\alpha:=10\), construct the nominal model \(G\) in state-space form, and compute its frequency response.
```

a = [0 10;-10 0];
b = eye(2);
c = [1 8;-10 1];
d = zeros(2,2);
G = ss(a,b,c,d);
K = [1 -2;0 1];

```

The nominal plant was analyzed previously using the command. Based on experimental data, the gain of the first input channel, \(b(1,1)\), is found to vary between 0.97 and 1.06 . The following statement generates the updated uncertain model.
```

ingain1 = ureal('ingain1',1,'Range',[0.97 1.06]);
b = [ingain1 0;0 1];

```
```

Gunc = ss(a,b,c,d);

```

Because of differences between measured data and the plant model an \(8 \%\) unmodeled dynamic uncertainty is added to the plant outputs.
```

unmod = ultidyn('unmod',[2 2],'Bound',0.08);
Gmod = (eye(2)+unmod)*Gunc;
Gmodg = ufrd(Gmod,logspace(-1,3,60));

```

You can use the command wcmargin to determine the worst-case gain and phase margins in the presences of the uncertainty.
```

[wcmi,wcmo] = wcmargin(Gmodg,K);

```

The worst-case analysis corresponds to maximum allowable disk margin for all possible defined uncertainty ranges. The worst-case single-loop margin analysis performed using wcmargin results in a maximum allowable gain margin variation of 1.31 and phase margin variations of \(\pm 15.6\) degs in the second input channel in the presence of the uncertainties 'unmod' and 'ingain1'. wcmi(1)
ans =
    GainMargin: [0.3613 2.7681]
    PhaseMargin: [-50.2745 50.2745]
        Frequency: 0.1000
    Sensitivity: [1x1 struct]
wcmi(2)
ans =
    GainMargin: [0.7585 1.3185]
    PhaseMargin: [-15.6426 15.6426]
    Frequency: 0.1000
    Sensitivity: [1x1 struct]

Hence even though the second channel had infinite gain margin and 90 degrees of phase margin, allowing variation in both uncertainties, 'unmod ' and 'ingain1' leads to a dramatic reduction in the gain and phase margin.

You can display the sensitivity of the worst-case margin in the second input channel to 'unmod' and 'ingain1' as follows:
```

wcmi(2).Sensitivity
ans =
ingain1: 12.1865
unmod: 290.4557

```

The results indicate that the worst-case margins are not very sensitive to the gain variation in the first input channel, 'ingain1' , but very sensitive to the LTI dynamic uncertainty at the output of the plant.

The worst-case single-loop margin at the output results in a maximum allowable gain margin variation of 1.46 and phase margin variation of \(\pm 21.3\) degs in the second output channel in the presence of the uncertainties 'unmod' and 'ingain1'.
```

wcmo(1)
ans =
GainMargin: [0.2521 3.9664]
PhaseMargin: [-61.6995 61.6995]
Frequency: 0.1000
Sensitivity: [1x1 struct]
wcmo(2)
ans =
GainMargin: [0.6835 1.4632]
PhaseMargin: [-21.2984 21.2984]
Frequency: 0.1000
Sensitivity: [1x1 struct]

```

You can display the sensitivity of the worst-case margin in the second output channel to 'unmod' and 'ingain1' as follows:
```

wcmo(2).Sensitivity
ans =
ingain1: 16.3435
unmod: 392.1320

```

The results are similar to the worst-case margins at the input. However, the worstcase margins at the second output channel are even more sensitive to the LTI dynamic uncertainty than the input channel margins.

\section*{See Also}
dmplot | loopsens | usubs | wcgain | robuststab | wcmarginOptions | wcsens

\section*{wcmarginOptions}

Option set for wcmargin

\section*{Syntax}
```

opt = wcmarginOptions

```
opt = wcmarginOptions(Name,Value,...)

\section*{Description}
opt \(=\) wcmarginOptions returns the default option set for wcmargin.
opt = wcmarginOptions(Name, Value, ...) creates an option set with the options specified by one or more Name, Value pair arguments.

\section*{Input Arguments}

\section*{Name-Value Pair Arguments}

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and Value is the corresponding value. Name must appear inside single quotes (' '). You can specify several name and value pair arguments in any order as Name1, Value1, ..., NameN, ValueN.

\section*{'Sensitivity'}

Determines whether to compute the sensitivity of worst-case gain with respect to each individual uncertain element.

Sensitivity is a string that takes the following values:
- ' on ' - Sensitivity of the worst-case gain is computed with respect to each individual uncertain element. This provides an indication of which elements are most problematic.
- 'off' - wcmargin does not compute the sensitivity of the worst-case gain with respect to each individual uncertain element.

Default: 'off'

\section*{'AbsTol'}

Absolute tolerance on computed worst-case margin bounds.
The algorithm terminates if UpperBound-LowerBound <= max (AbsTol, Reltol*UpperBound)

Default: 0.02

\section*{'RelTol'}

Relative tolerance on computed worst-case margin bounds.
The algorithm terminates if UpperBound-LowerBound \(<=\max\) (AbsTol, Reltol*UpperBound)

Default: 0.05

\section*{Output Arguments}

\section*{opt}

Option set containing the specified options for wcmargin.

\section*{Examples}

Create an options set for wcmargin with an 0.01 and 0.03 as the absolute and relative tolerances on the worst-case margin bounds, respectively.
```

opt = wcmarginOptions('AbsTol',0.01,'RelTol',0.03);

```

Alternatively, use dot notation to set the values of opt.
```

opt = wcmarginOptions;
opt.AbsTol = 0.01;

```
```

opt.RelTol = 0.03;

```

\section*{See Also}
wcmargin | wcgainOptions

\section*{wcnorm}

Worst-case norm of uncertain matrix

\section*{Syntax}
```

maxnorm = wcnorm(m)
[maxnorm,wcu] = wcnorm(m)
[maxnorm,wcu] = wcnorm(m,opts)
[maxnorm,wcu,info] = wcnorm(m)
[maxnorm,wcu,info] = wcnorm(m,opts)

```

\section*{Description}

The norm of an uncertain matrix generally depends on the values of its uncertain elements. Determining the maximum norm over all allowable values of the uncertain elements is referred to as a worst-case norm analysis. The maximum norm is called the worst-case norm.

As with other uncertain-system analysis tools, only bounds on the worst-case norm are computed. The exact value of the worst-case norm is guaranteed to lie between these upper and lower bounds.

\section*{Basic syntax}

Suppose mat is a umat or a uss with \(M\) uncertain elements. The results of
```

[maxnorm,maxnormunc] = wcnorm(mat)

```
maxnorm is a structure with the following fields.
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline LowerBound & Lower bound on worst-case norm, positive scalar. \\
\hline UpperBound & Upper bound on worst-case norm, positive scalar. \\
\hline
\end{tabular}
maxnormunc is a structure that includes values of uncertain elements and maximizes the matrix norm. There are \(M\) field names, which are the names of uncertain elements of mat. The value of each field is the corresponding value of the uncertain element, such that when jointly combined, lead to the norm value in maxnorm. LowerBound. The following command shows the norm:
```

norm(usubs(mat,maxnormunc))

```

\section*{Basic syntax with third output argument}

A third output argument provides information about sensitivities of the worst-case norm to the uncertain elements ranges.
```

[maxnorm,maxnormunc,info] = wcgain(mat)

```

The third output argument info is a structure with the following fields:
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Sensitivity & \begin{tabular}{l} 
A struct with \(M\) fields. Fieldnames are names of uncertain elements \\
of sys. Field values are positive numbers, each entry indicating the \\
local sensitivity of the worst-case norm in maxnorm. LowerBound \\
to all of the individual uncertain elements uncertainty ranges. For \\
instance, a value of 25 indicates that if the uncertainty range is \\
increased by 8\%, then the worst-case norm should increase by about \\
\(2 \%\). If the Sensitivity property of the wcgainOptions object is \\
'off', the values are NaN.
\end{tabular} \\
\hline Array Index & \begin{tabular}{l} 
1-by-1 scalar matrix with the value of 1. In more complicated \\
situations (described later) the value of this field depends on the input \\
data.
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

You can construct an uncertain matrix and compute the worst-case norm of the matrix, as well as its inverse. Your objective is to accurately estimate the worst-case, or the largest, value of the condition number of the matrix.
```

a=ureal('a',5,'Range',[4 6]);
b=ureal('b',2,'Range',[[1 3]);
b=ureal('b',3,'Range',[2 10]);

```
```

c=ureal('c',9,'Range',[8 11]);
d=ureal('d',1,'Range',[0 2]);
M = [a b;c d];
Mi = inv(M);
[maxnormM] = wcnorm(M)
maxnormM =
LowerBound: 14.7199
UpperBound: 14.7327
[maxnormMi] = wcnorm(Mi)
maxnormMi =
LowerBound: 2.5963
UpperBound: 2.5979

```

The condition number of \(M\) must be less than the product of the two upper bounds for all values of the uncertain elements making up M. Conversely, the largest value of M condition number must be at least equal to the condition number of the nominal value of M. Compute these crude bounds on the worst-case value of the condition number.
```

condUpperBound = maxnormM.UpperBound*maxnormMi.UpperBound;
condLowerBound = cond(M.NominalValue);
[condLowerBound condUpperBound]
ans =
5.0757 38.2743

```

How can you get a more accurate estimate? Recall that the condition number of an \(n x m\) matrix \(M\) can be expressed as an optimization, where a free norm-bounded matrix \(\Delta\) tries to align the gains of \(M\) and \(M-{ }^{1}\)
\[
\begin{gathered}
\kappa(M)=\max _{\Delta \in C^{m \times m}}\left(\sigma_{\max }\left(M \Delta M^{-1}\right)\right) \\
\sigma_{\max }(\Delta) \leq 1
\end{gathered}
\]

If \(M\) is itself uncertain, then the worst-case condition number involves further maximization over the possible values of \(M\). Therefore, you can compute the worst-case condition number of an uncertain matrix by using a ucomplexm uncertain element, and then by using wenorm to carry out the maximization.

Create a 2-by-2 ucomplexm object, with nominal value equal to zero.
Delta = ucomplexm('Delta',zeros(2,2));
The range of values represented by Delta includes 2 -by- 2 matrices with the maximum singular value less than or equal to 1 .

You can create the expression involving \(M\), Delta and inv (M).
H = M*Delta*Mi;
Finally, consider the stopping criteria and call wenorm. One stopping criteria for wcnorm \((\mathrm{H})\) is based on the norm of the nominal value of H . During the computation, if wenorm determines that the worst-case norm is at least

ABadThreshold+MBadThreshold*norm(N.NominalValue)
then the calculation is terminated. In our case, since H. NominalValue equals 0 , the stopping criteria is governed by ABadThreshold. The default value of ABadThreshold is 5 . To keep wcnorm from prematurely stopping, set ABadThreshold to 38 (based on our crude upper bound above).
```

opt = wcgopt('ABadThreshold',38);
[maxKappa,wcu,info] = wcnorm(H,opt);
maxKappa
maxKappa =
LowerBound: 26.9629
UpperBound: 27.9926

```
You can verify that wcu makes the condition number as large as maxKappa.LowerBound.
```

cond(usubs(M,wcu))

```
ans =
    26.9629

\section*{More About}

\section*{Algorithms}

See wcgain

\section*{See Also}
norm | wcgain | wcgainOptions

\section*{wcsens}

Calculate worst-case sensitivity and complementary sensitivity functions of plantcontroller feedback loop

\section*{Syntax}
```

wcst = wcsens(L)
wcst = wcsens(L,type)
wcst = wcsens(L,opt)
wcst = wcsens(L,type,scaling)
wcst = wcsens(L,type,scaling,opt)
wcst = wcsens(P,C)
wcst = wcsens(P,C,type)
wcst = wcsens(P,C,opt)
wcst = wcsens(P,C,type,scaling)
wcst = wcsens(P,C,type,scaling,opt)

```

\section*{Description}

The sensitivity function, \(S=(I+L)^{-1}\), and the complementary sensitivity function, \(T=\) \(L(I+L)^{-1}\), where \(L\) is the loop gain matrix associated with the input, \(C P\), or output, \(P C\), are two transfer functions related to the robustness and performance of the closed-loop system. The multivariable closed-loop interconnection structure, shown below, defines the input/output sensitivity, complementary sensitivity and loop transfer functions.

\begin{tabular}{|l|l|}
\hline Description & Equation \\
\hline Input sensitivity \(\left(T F_{e 1 \leftarrow d 1}\right)\) & \((I+C P)^{-1}\) \\
\hline Input complementary sensitivity \(\left(T F_{e 2 \leftarrow d 1}\right)\) & \(C P(I+C P)^{-1}\) \\
\hline Output sensitivity \(\left(T F_{e 3 \leftarrow d 2}\right)\) & \((I+C P)-1\) \\
\hline Output complementary sensitivity \(\left(-T F_{e 4 \leftarrow d}\right)\) & \(P C(I+P C)-1\) \\
\hline Input loop transfer function & \(C P\) \\
\hline Output loop transfer function & \(P C\) \\
\hline
\end{tabular}
wcst \(=\) wcsens(L) calculates the worst-case sensitivity and complementary sensitivity functions for the loop transfer matrix \(L\) in feedback in negative feedback with an identity matrix. If \(L\) is a uss object, the frequency range and number of points are chosen automatically.
wcst \(=\) wcsens ( \(\mathrm{P}, \mathrm{C}\) ) calculates the worst-case sensitivity and complementary sensitivity functions for the feedback loop C in negative feedback with P. C should only be the compensator in the feedback path, not any reference channels, if it is a 2 -dof architecture (see loopsens). If P and C are ss/tf/zpk or uss objects, the frequency range and number of points are chosen automatically. wcst is a structure with the following substructures:

\section*{Fields of wcst}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline Si & Worst-case input-to-plant sensitivity function \\
\hline Ti & Worst-case input-to-plant complementary sensitivity function \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline So & Worst-case output-to-plant sensitivity function \\
\hline To & Worst-case output-to-plant complementary sensitivity function \\
\hline PSi & Worst-case plant times input-to-plant sensitivity function \\
\hline CSo & Worst-case compensator times output-to-plant sensitivity function \\
\hline Stable & \begin{tabular}{l}
1 if nominal closed loop is stable, 0 otherwise. NaN for frd/ufrd \\
objects.
\end{tabular} \\
\hline
\end{tabular}

Each sensitivity substructure is a structures with five fields MaximumGain, BadUncertainValues, System, BadSystem, Sensitivity derived from the outputs of wcgain.

Fields of Si, So, Ti, To, PSi, CSo
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline MaximumGain & \begin{tabular}{l} 
struct with fields LowerBound, UpperBound and \\
CriticalFrequency. LowerBound and UpperBound are bounds \\
on the unweighted maximum gain of the uncertain sensitivity \\
function. CriticalFrequency is the frequency at which the \\
maximum gain occurs.
\end{tabular} \\
\hline BadUncertainValues & \begin{tabular}{l} 
Struct, containing values of uncertain elements which maximize \\
the sensitivity gain. There are \(M\) fluidness, which are the names \\
of uncertain elements of sensitivity function. The value of \\
each field is the corresponding value of the uncertain element, \\
such that when jointly combined, lead to the gain value in \\
MaximumGain. LowerBound.
\end{tabular} \\
\hline System & \begin{tabular}{l} 
Uncertain sensitivity function (ufrd or uss). \\
\hline BadSystem \\
\end{tabular} \begin{tabular}{l} 
Worst-case system based on the uncertain object values \\
in BadUncertainValues. BadSystem is defined as \\
BadSystem=usubs (System, BadUncertainValues).
\end{tabular} \\
\hline Sensitivity & \begin{tabular}{l} 
Struct with M fields, fieldnames are names of uncertain elements \\
of system. Values of fields are positive numbers, each entry \\
indicating the local sensitivity of the maximum gain to all of the \\
individual uncertain elements uncertainty ranges. For instance, \\
a value of 50 indicates that if the uncertainty range is enlarged \\
by 8\%, then the maximum gain should increase by about 4\%. If
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field & Description \\
\hline & \begin{tabular}{l} 
the 'Sensitivity' property of the wagopt object is 'off', the \\
values are NaN.
\end{tabular} \\
\hline
\end{tabular}
wcst \(=\) wcsens(L,type) and wcst \(=\) wcsens( \(\mathrm{P}, \mathrm{C}\), type) allow selection of individual Sensitivity and Complementary Sensitivity functions, type, as 'Si', 'Ti', 'So', 'To', 'PSi', 'CSo' corresponding to the sensitivity and complementary sensitivity functions. Setting type to ' \(S^{\prime}\) or ' \(T\) ' selects all sensitivity functions ('Si', 'So', 'PSi', 'CSo') or all complementary sensitivity functions ('Ti', 'To'). Similarly, setting type to 'Input ' or 'Output' selects all input Sensitivity functions ('Si', 'Ti', 'PSi') or all output sensitivity functions ('So, 'To', 'CSo'). 'All' selects all six Sensitivity functions for analysis (default). type may also be a cell containing a collection of strings, i.e. 'Si' , 'To', as well as a comma separated list.
wcst \(=\) wcsens(L,type, scaling) and wcst \(=\) wcsens(P,C,type, scaling) add a scaling to the worst-case sensitivity analysis. scaling is either the character strings 'Absolute' (default), 'Relative' or a ss/tf/zpk/frdobject. The default scaling 'Absolute' calculates bounds on the maximum gain of the uncertain sensitivity function. The 'Relative' scaling finds bounds on the maximum relative gain of the uncertain sensitivity function. That is, the maximum relative gain is the largest ratio of the worst-case gain and the nominal gain evaluated at each frequency point in the analysis, Similarly if scaling is a ss/tf/zpk/frd object, bounds on the maximum scaled gain of the uncertain sensitivity function are found. If scaling is 'Relative'or a ss/tf/zpk/frd object, the worst-case analysis peaks over frequency. If scaling is an object, its input/output dimensions should be 1-by-1 or dimensions compatible with \(P\) and C. type and scaling can also be combined in a cell array, e.g.
wcst = wcsens(P,C,\{'Ti','So'\},'Abs','Si','Rel','PSi',wt)
wcst \(=\) wcsens(P, C,opt) or wcst \(=\) wcsens( \(P, C\), type, scaling, opt) specifies options for the worst-case gain calculation as defined by opt. (See wcgopt for more details on the options for wcsens.)

The sensitivity of the worst-case sensitivity calculations to the individual uncertain components can be determined using the options object opt. To compute the sensitivities to the individual uncertain components, create a wcgopt options object, and set the Sensitivity property to 'on'.
opt = wcgopt('Sensitivity','on');
```

wcst = wcsens(P,C,opt)

```

\section*{Examples}

The following constructs a feedback loop with a first order plant and a proportionalintegral controller. The time constant is uncertain and the model also includes an multiplicative uncertainty. The nominal (input) sensitivity function has a peak of 1.09 at omega \(=1.55 \mathrm{rad} / \mathrm{sec}\). Since the plant and controller are single-input \(/\) single-output, the input/output sensitivity functions are the same.
```

delta = ultidyn('delta',[1 1]);
tau = ureal('tau',5,'range',[4 6]);
P = tf(1,[tau 1])*(1+0.25*delta);
C=tf([4 4],[1 0]);
looptransfer = loopsens(P,C);
Snom = looptransfer.Si.NominalValue;
norm(Snom,inf)
ans =
1.0864

```
wcsens is then used to compute the worst-case sensitivity function as the uncertainty ranges over its possible values. More information about the fields in wcst.Si can be found in the wcgain help. The badsystem field of wcst. Si contains the worst case sensitivity function. This worst case sensitivity has a peak of 1.52 at omega \(=1.02 \mathrm{rad} /\) sec . The maxgainunc field of wcst. Si contains the perturbation that corresponds to this worst case sensitivity function.
```

wcst = wcsens(P,C)
wcst =
Si: [1x1 struct]
Ti: [1x1 struct]
So: [1x1 struct]
To: [1x1 struct]
PSi: [1x1 struct]
CSo: [1x1 struct]
Stable: 1
Swc = wcst.Si.BadSystem;
omega = logspace(-1,1,50);
bodemag(Snom,'-',Swc,'-.',omega);
legend('Nominal Sensitivity','Worst-Case Sensitivity',...
'Location','SouthEast')
norm(Swc,inf)

```

\section*{ans \(=\)}
1.5075

For multi-input/multi-output systems the various input/output sensitivity functions will, in general, be different.

\section*{References}
J. Shin, G.J. Balas, and A.K. Packard, "Worst case analysis of the X-38 crew return vehicle flight control system," AIAA Journal of Guidance, Dynamics and Control, vol. 24, no. 2, March-April 2001, pp. 261-269.

\author{
See Also \\ loopsens | usubs | wcgain | wcgopt | robuststab | wcmargin
}

\section*{Block Reference}

\author{
MultiPlot Graph \\ Uncertain State Space \\ USS System
}

\section*{MultiPlot Graph}

Plot multiple signals

\section*{Description}


The MultiPlot Graph block displays signals in a MATLAB figure.
If the input signal is a vector, then each component of the vector is plotted in a separate axes. Lines are added to the axes in subsequent simulations. The most recent data is plotted in red. Older plots cycle through seven different colors. The block acts as a "holdon, subplotter."

There are two buttons in the toolbar menu. The eraser button clears the data from all axes. The export button saves all the visible plot data to the MATLAB workspace in a variable named by the dialog box entry Variable for Export to Workspace. The format is a struct array, following the behavior of a To Workspace block, using the "Structure, With Time" save format.

The MultiPlot Graph block can be used in conjunction with the Uncertain State Space block to visualize Monte Carlo and worst-case simulation time responses.

\section*{Dialog Box}

Sink Block Parameters: MultiPlot Graph
MultiPlot Graph (mask) (link)
Plots input ( Y ) against time ( t ) at each time step to create an \(\mathrm{T}-\mathrm{Y}\) plot. Ignores data outside the ranges specified by t-min, t-max, \(\mathrm{y}^{-}\) min, \(y\)-max.

Parameters
t-min (view):
回
t-max (view):
20
\(y\)-min:
-1
\(y\)-max:
1
Sample time:
-1
Title

Variable for Export to Workspace
multisimout

\section*{Parameters}

\section*{t-min, t-max}

The parameter entries \(t\)-min and \(t\)-max are the minimum and maximum x -axis limits. t min and t-max may be vectors corresponding to each subplot.

\section*{\(y\)-min, \(y\)-max}

The parameter entries \(y\)-min and \(y\)-max are the minimum and maximum \(y\)-axis limits and similarly may be vector quantities.

\section*{Sample time}

Sample time corresponds to the sample time at which to collect points.

\section*{Title}

Specifies the title of the multiplot figure.

\section*{Variable for Export to Workspace}

Variable name of the MATLAB object to contain all the visible plot data exported to the MATLAB workspace. The format is a struct array, following the behavior of a To Workspace block, using the "Structure, With Time" save format.

\section*{Uncertain State Space}

Specify uncertain system in Simulink


The Uncertain State Space block lets you model parametric and dynamic uncertainty in Simulink. The block accepts uncertain state space (uss) models or any model that can be converted to uss, such as umat, ureal and ultidyn objects.

\section*{Dialog Box}

Function Block Parameters: Uncertain State Space
Uncertain State Space Block (mask) (link)
This block models linear systems with uncertain parameters and uncertain dynamics (see USS).

You can simulate how uncertainty affects system performance by generating randomized values for the uncertain variables. Use UFIND to find all uncertain variables in the model and USAMPLE to generate sample values for the "Uncertainty value" mask parameter. Each uncertainty value represents one possible behavior of the uncertain system.

You can also investigate uncertainty effects in the frequency domain by linearizing the Simulink model with ULINEARIZE. This computes an uncertain state-space model (USS) that aggregates the uncertainty from all Uncertain State Space blocks.

Parameters
Uncertain system variable (uss):

\section*{ss(ureal('a',-5),5,1,1)}

Uncertainty value (struct or [] to use nominal value):
[]
Initial states (nominal dynamics):
[]
Initial states (uncertain dynamics):
[]
OK Cancel Help Apply

\section*{Parameters}

\section*{Uncertain system variable (uss)}

Linear state-space model with uncertainty (uss object). Specify an uss object using one of the following:
- Function or expression that evaluates to an uss object. For example:
- ss(ureal('a', -5) , 5, 1, 1)
- wt*input_unc, where input_unc is an ultidyn object and wt and input_unc are defined in the MATLAB workspace.
- Variable name, defined in the MATLAB workspace. For example, unc_sys, where you define unc_sys = ss (ureal ('a', -5) ,5,1,1) in the workspace. This returns an uss object.
- Model type that can be converted to an uss object. For example:
- LTI models (tf, zpk and ss)
- Uncertain matrix (umat)
- Uncertain real parameters (ureal)
- Uncertain dynamics (ultidyn).

When the block is in a model with synchronous state control (see the State Control block), you must specify a discrete-time model.

\section*{Uncertainty value (struct or [] to use nominal value)}

Values of uncertain variables. The uss object that you enter in the Uncertain system variable (uss) field depends on uncertain variables (ureal or ultidyn object). Use this field to specify the values of these uncertain variables to use for simulation or linearization. Specify the value as one of the following:
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline [ ] & Use nominal values. \\
\hline Structure & \begin{tabular}{l} 
Use user-defined values. For example, struct ( ' a ' , 1 ) specifies a \\
value of 1 for the uncertain variable \(a\).
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Value & Description \\
\hline & \begin{tabular}{l} 
Use ufind and usample to generate randomized values of uncertain \\
variables for Monte Carlo simulation. For more information, see \\
"Vary Uncertainty Values Using Individual Uncertain State Space \\
Blocks" and "Vary Uncertainty Values Across Multiple Uncertain \\
State Space Blocks" in the Robust Control Toolbox User's Guide.
\end{tabular} \\
\hline
\end{tabular}

\section*{Initial states (nominal dynamics)}

If the nominal value of the uncertain state variable, unc_sys.NominalValue where unc_sys is the uncertain system variable specified in the Uncertain system variable field, has states, specify the initial condition for these states. The value defaults to zero.

\section*{Initial states (uncertain dynamics)}

If the uncertain system contains some dynamic uncertainty (ultidyn), specify the initial state of these dynamics. The value defaults to zero.

\section*{See Also}
ufind, usample, ulinearize, uss, umat, ureal, ultidyn

\section*{Tutorials}

Robustness Analysis in Simulink
Linearization of Simulink Models with Uncertainty

\section*{How To}

\author{
"Simulate Uncertainty Effects" \\ "Computing Uncertain State-Space Models from Simulink Models"
}

\section*{USS System}

Import uncertain systems into Simulink

Note USS System block will be removed in a future release. Use Uncertain State Space block instead.

\section*{Description}

The USS System block accepts USS and UMAT containing ureal and ultidyn uncertain objects, as well as ureal and ultidyn objects. An instance of the uncertain system is used in the simulation or linearization. Internally, USS models are converted to their state space equivalent for evaluation.

\section*{Parameters}

\section*{USS system variable}

The uncertain object (USS, UMAT, ureal, or ultidyn) is entered in the USS system variable.

\section*{Initial states (nominal dynamics)}

If the nominal value for the USS system variable has states, then the initial condition for these states is entered in Initial states (nominal dynamics).

\section*{Uncertainty value}

The values for the uncertain elements are controlled by the Uncertainty value menu. If Nominal is selected, then the nominal value of the uncertain object is used. If you select User defined, then you must enter a MATLAB structure in the User-defined uncertainty (struct) dialog box. The field names of the structure should correspond to the names of the uncertain atoms within the USS system variable, while the values
of the fields are the values used for the uncertain objects (using the command usubs). If some of these values are SS objects, then these states are referred to as uncertainty states.

The order of the uncertainty states is determined by the order of atoms in the Uncertainty property of the USS system variable. The state dimension is determined by the actual data in the User-defined uncertainty structure. Any extra fields in the User-defined uncertainty structure are ignored.

\section*{User-defined uncertainty (struc)}

If User defined is selected from the Uncertainty value pop-up menu, then the structure data entered in User-defined uncertainty (struct) must contain fields corresponding to every uncertain atom of the USS system variable. Extra fields are ignored. usimsamp generates a random instance of each atom in a Simulink model. It returns a structure, suitable for entry in User-defined uncertainty (struct).

\section*{Initial states (uncertain dynamics)}

The initial condition for the uncertainty states is entered in Initial states (uncertain dynamics).```


[^0]:    'S_ftjw' final closed-loop poles are inside the left [p1,p2] circle

